Electromechanics of Particles

Front Cover
Cambridge University Press, Oct 27, 1995 - Science - 265 pages
The focus of this book is on the interactions of small particles, in the size range of microns to millimeters, with electric or magnetic fields. This field has particularly useful practical applications, for instance in photocopier technology and lately in the characterization and manipulation of cells and DNA molecules. The author's objective is to bring together diverse examples of field-particle interactions from many areas of science and technology and then to provide a framework for understanding their common electromechanical phenomena. Using examples from dielectrophoresis, magnetic brush xerography, electrorheology, cell electrorotation, and particle chain rotation, Professor Jones introduces a general model--the effective dipole method--to build a set of predictive models for the forces and torques responsible for the important electromechanical effects. In the last part of the book, the author covers the ubiquitous phenomenon of particle chaining. This book will be highly useful to material engineers and scientists, chemists, and biologists who work with particles, powders, or granular materials.

Other editions - View all

Bibliographic information