Page images
PDF
EPUB

similarly may each of the other pairs of simple factors be compounded into a quadratic factor; and the last factor, if n is even, is x + 1. So that, if n is even,

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

65.] The solution of the equation "+1=0, and the resolu

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]

but if x" +1= 0, x = ( − 1)"; and therefore the several values

of x, or roots of the equation

"+1=0, are the values which the right-hand member of equation (54) admits of. Now k may be any integral number; let therefore

[blocks in formation]

n

after which the values recur, for the substitution of

1

gives the same values of (-1) as the substitution of

for k

2

[blocks in formation]

n

and the substitution of

2

+1 for k gives the same values of

1

n

(-1)" as the substitution of -2; and so on.

2

And if n is odd, the substitutions for k must continue until

[ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

after which the values recur; and thus in both cases we have n,

1

and only n, different values of (-1); and therefore "+1=0 has n, and only n, different roots.

These roots may be expressed in the exponential form, in the same way as those considered in the preceding Article; but as the results are similar it is unnecessary to write them at length. Let us consider one or two examples.

Ex. 1. Find the roots of x1+1 = 0.

In this case n = 4, and from (55) we have

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors]

Ex. 2. Find the roots of

In this case n = 5, and from (56) we have

= COS

+

-1 sin

4

5+1=0.

[blocks in formation]

Thus also may

[blocks in formation]

"+10 be resolved into its factors; for by reason of the roots in group (55), corresponding to k = 0,

there are two factors, viz. x

[blocks in formation]

a quadratic factor x2 - 2x cos +1. Similarly may each of

n

the other pairs of factors corresponding to k = 1, k = 2, ......

[blocks in formation]

-1 be compounded into a quadratic factor; so that, if

n is even,

x” + 1 = (x2 − 2 x cos — + 1) (x2 − 2 x cos

π

[ocr errors]

+1).....

n

n

[ocr errors][merged small][merged small][merged small][merged small][merged small]

Similarly, if n is odd, there are quadratic factors correspond

n-3

ing to k = 0, k = 1, k = 2, ... k=2; and when k = appears by (56), there is a simple factor x + 1; so that

[merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]

n

-1

[blocks in formation]

+1)(x+1). (58)

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][subsumed][merged small]

66.] If the problem is to resolve "-a", and "+a" into their factors, then, since

[blocks in formation]

so that, in both cases, there will be n different values of x,

[blocks in formation]

arising from the n different values of (1)" and of (-1)", which have been found above.

67.] On the imaginary logarithms of positive and negative numbers.

[ocr errors]

One of the most remarkable results of our admission into the subjects of the Calculus of such quantities and symbols as we are now considering, is the extension which they afford to the theory of logarithms. In ordinary treatises on logarithms it is shewn that the logarithm of O is ∞o; of 1 is 0; and of +∞ is; so that the whole range of possible number from - ∞ to +∞ is exhausted in the logarithms of number between 0 and +; what then is the form of logarithm of negative numbers? The preceding theory enables us to give some answer to this question.

PRICE, VOL. I.

[ocr errors]

Since, by equation (31), Art. 61,

cos +1 sin x = ex√1,

[ocr errors]

for let us write x + 2k, k being any integer;

..

cos (x + 2 kπ) + √−1 sin (x + 2 km) = @(x+2km) √−1 ̧

(59)

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small]

in which remarkable results it must be remembered that e and are severally the symbols of the arithmetical numbers 2.7182818 and 3.14159. Therefore from (60) it follows, that 2k1 is the general Napierian logarithm of 1, and (2k+1)√√1 of 1; and therefore

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]

In (62), if k = 0, log, 1 = 0, which is the common arithmetical logarithm of 1; but as k may be any integral number, it follows that +1 has an infinite number of Napierian logarithms, all of which, except 0, are affected with -1; hence also it follows, that every positive number has an infinite number of logarithms to the same base. For suppose a to be the arithmetical Napierian logarithm of y, so that

y = ex;

then y = e* x1 = e* × e2k= √=I = @(x+2k # √−1);

(64)

therefore x + 2kπ-1 is the general Napierian logarithm of y, which we will represent by Logy; and let us represent the arithmetical logarithm by log y ;

- ;

(65)

... Loge y = loge y+2kπ √√√−1 hence the arithmetical logarithm is the particular value of the general logarithm corresponding to k = 0.

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]

and therefore, whatever is the base, every number has an infinite number of logarithms to that base.

Again, in equation (63), since k is to be an integer, it follows, that log(-1) can never be a possible quantity, and therefore -1 has no arithmetical logarithm; yet, since k may be any

integer, every negative number has an infinite number of Napierian logarithms, and therefore of logarithms to any other base, all of which are affected with

In equation (63), let k = 0,

-1.

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]

two of the most curious results in Analysis; in which however, and in all similar expressions, we must bear in mind that e and are the symbolical representations of certain series, and are therefore to be interpreted with respect to them; and in an algebraical system of course, which admits them amongst those quantities whose laws and combinations it takes cognizance of.

SECTION 3.-Theory of the Equicrescent Variable, and
Taylor's Series.

68.] In the two preceding Sections of this Chapter we have considered certain theorems which arise from an algebraical relation between f(x) and its several and successive derivedfunctions; but as these have been formed on an unexplained hypothesis of x increasing by equal increments, by virtue of which has been called the equicrescent variable, an adequate conception of the subject requires a discussion at greater length. We shall reserve other important algebraical relations to the succeeding Chapter.

Let y = f(x) be an explicit function of aæ, finite and continuous for all values of a under which we consider it; whether any other values may make it infinite or discontinuous is what we are not concerned with.

Let a receive an increment da, so that, in accordance with Art. 17, y becomes y+dy, and we have

y+ dy = f(x+dx).

(69)

And let a receive another increment, not necessarily equal to dr; and let it be dx + d.dx = dx + d2x; so that we have

y+dy + d (y+dy) = f {x+dx + d (x + dx)},

y+2 dy+d2y = f(x+2 dx + d2x).

(70)

« PreviousContinue »