Page images
PDF
EPUB

was not until comparatively recent times that a metal of even a moderate degree of purity was obtained.

4

A. Scott reported a new element from the black titaniferous sands of Maketu, New Zealand. The properties of its compounds were those characteristic of the titaniumuranium family; its at. wt. was stated to be 144; and it was said to form a cinnamoncoloured oxide very resistant to chemical agents. He proposed calling the new element oceanium-from Oceanus, one of the Titans. D. Coster and G. Hevesy's examination of A. Scott's preparation showed no X-ray spectral lines characteristic of a new element and C. J. Smithells and F. S. Goucher failed to establish the existence of a new element in the Maketu sands. A. Scott showed later that the oxide of the supposed new element was nothing more than titanium oxide associated with silica, and postulated that part of the titanium was replaced by silicon. The colour was due to the presence of a little iron oxide.

REFERENCES.

1 W. Gregor, Crell's Ann., i, 40, 103, 1791; ii, 55, 1791; Journ. Phys., 72. 152, 1791. 2 M. H. Klaproth, Beiträge zur chemischen Kenntniss der Mineralkörper, Berlin, 1. 233, 245, 1795; 2. 222, 226, 1797; 4. 153, 1801; 5. 208, 1810; Journ. Mines, 2. 45, 1795; 3. 1, 1796.

3 W. A. Lampadius, Sammlung praktisch-chemischen Abhandlungen, Dresden, 2. 124, 1797; Crell's Ann., 25. Î, 230, 259, 1797; J. T. Lowitz, ib., 31. 1, 183, 1799; L. N. Vauquelin, Journ. Phys., 66. 345, 1805; L. N. Vauquelin and L. Hecht, Journ. Mines, 3. 15, 1796; R. Chenevix, Phil. Trans., 92. 327, 1802; Nicholson's Journ., 5. 132, 1802; J. J. Berzelius, Pogg. Ann., 4. 1, 1825; F. Wöhler, Liebig's Ann., 73. 34, 1849; 74. 212, 1849; H. Rose, Gilbert's Ann., 73. 67, 129, 1821; Pogg. Ann., 1. 76, 1824; 3. 13, 1825; 12. 479, 1828; 15. 145, 1829; 16. 57, 1829; 24. 141, 1832; 42. 527, 1837; E. J. Hallock, Index to the Literature of Titanium, 1783-1876, Washington, 1879; Ann. New York Acad., 1. 53, 1879; G. A. Koenig, Proc. Phil. Acad. Science, 42, 1876.

4 A. Scott, Journ. Chem. Soc., 123. 311, 1923; Nature, 111. 463, 598, 1923; C. J. Smithells and F. S. Goucher, ib., 111. 397, 463, 881, 1923; D. Coster and G. Hevesy, ib., 111. 252, 1923.

§ 2. The Occurrence of Titanium

;

The metal does not occur free in nature. Its compounds are very widely diffused in small quantities; indeed, although titanium is often grouped with the scarce metals, it appears to be more abundant than copper, lead, zinc, or any of the common metals except iron. Titanium, however, is rarely found with any considerable quantity located in one spot. Concentrated deposits are scarce. Titanium is nearly always a constituent of igneous rocks, and of sediments derived therefrom. According to F. W. Clarke,1 out of 800 rocks analyzed in the United States, 784 contained titanium. J. H. L. Vogt, J. F. Kemp, A. Harker, and H. S. Washington also made confirmatory reports. From J. Joly's and F. W. Clarke's estimates 0:46 per cent. of the earth's crust is titanium, 277 per cent. silicon, and thorium 0.002 per cent. F. W. Clarke and H. S. Washington gave 0.46 per cent. of titanium; and J. H. L. Vogt, 0.33 per cent. According to A. J. Angström,2 F. Cornu, G. Salet, R. Thalén, H. L. Cortie, J. N. Lockyer and F. E. Baxandall, H. Deslandres, W. M. Mitchell, M. N. Saha, F. W. Dyson, and W. S. Adams, titanium is present, probably in the gaseous state, in the atm. of the sun. A. Fowler observed it in the spectra of stars. A. Daubrée, C. F. Rammelsberg, G. P. Merrill and H. N. Stokes, and E. E. Howell and co-workers found titanium in various meteorites.

The most important mineral sources of titanium are rutile and ilmenite; perowskite and sphene are of less importance. These minerals are discussed elsewhere. Rutile contains 90-100 per cent. TiO2 (q.v.), and varieties are represented by the minerals crispite, davidite, dicksbergite, ilmenorutile, nigrine, sagenite, and strüverite. Another tetragonal form of rutile is anatase or octahedrite; and the rhombic form is brookite, with its varieties arkansite and jurinite. The titanates are represented by ilmenite, a ferrous titanate, FeTiO3. This mineral has 3 to 59 per cent. TiO2, and varieties are called crichtonite, hystatite, iserine, kibdelophane, picroilmenite, titanoferrite, washingtonite, and titaniferous iron ore. The ferric orthotitanate, Fe4(TiO4)3, is represented by pseudobrookite, and ferric metatitanate, Fe2(TiO3)3, by arizonite; calcium metatitanate, CaTiO3, by perowskite;

hydrotitanite is an altered perowskite; and knopite is a related variety. Magnesium metatitanate, MgTiO3, is represented by geikielite; manganese metatitanate, MnTiO3, by pyrophanite; a mixed mesodititanate (Fe, Mn,Pb)TiO 3, by senaite. Astrophyllite is a titanium silicate; and lamprophyllite is a related variety. The titanosilicates are represented by sphene or titanite, CaTiSiO5, and guarinite, CaTiSiO1. As varieties appear alshedite, aspidelite, eucolite-titanite, greenovite, grothite, lederite, ligurite, menacanite, pictite, spinthere; and yttrotitanite; with the alteration products leucoxene, titanomorphite, and xanthitane. A barium titanosilicate, BaTiSi309, is represented by benitoite. A titaniferous garnet is called schlorlomite, and the variety ivaarite; ænigmatite and the variety cossyrite are iron and columbium titanosilicates; neptunite is a titanosilicate of alkalies and iron; keilhauite, of calcium, aluminium, iron, and yttrium; narsarsukite, iron and sodium; lorenzenite, of sodium and zirconium; leucosphenite, sodium, barium, and zirconium; tscheffkinite, of calcium, iron, aluminium, cerium, and yttrium; and molengraaffite and rhonite are still more complex. The borotitanates are represented by warwickite; and the titanoantimonites by lewisite, mauzelite, and derbylite-vide antimonites.

J. C. G. de Marignac 3 showed that a number of columbates and tantalates may be regarded as titanium minerals, although they are separately discussed with the elements columbium and tantalum. For example, aschynite (21 per cent. TiO2), blomstrandine (21-23 per cent. TiO2), blomstrandite (10-11 per cent. TiO2), chalcolamprite are related to pyrochlore, dysanalyte (40-60 per cent. TiO2), epistolite (7-8 per cent. TiO2), euxenite (20-24 per cent. TiO2), marignacite and pyrochlore (514 per cent. TiO2), polycrase (25-30 per cent. TiO2), polymignite (18-19 per cent. TiO2), risörite (6-7 per cent. TiO2), and wilkite (23-24 per cent. TiO2). Similar remarks apply to the cerium minerals johnstrupite (7-8 per cent, TiO2), mosandrite (5-10 per cent. TiO2), rinkite (13-14 per cent. TiO2); the yttrium minerals delorenzite (55-70 per cent. TiO2), and yttrocrasite (40-50 per cent. TiO2); and the zirconium minerals hainite (28-32 per cent. TiO2), rosenbuschite (20 per cent. TiO2), and zirkelite (14-15 per cent. TiO2). The occurrence of titanium in the spinel hoegbomite was discussed by T. L. Watson. Many observations,5 in addition to those cited above, have been made on the occurrence of titanium in minerals.

E. Cohen, M. F. Heddle, E. Jackson, P. Jannasch and J. H. Kloos, F. Knapp, E. Riley, H. Rose, A. Sauer, T. Scheerer, A. Stelzner, G. Vogt, and L. van Werweke have emphasized the almost ubiquitous occurrence of titanium in silicate rocks. R. Apjohn, and V. Roussel found it in basalt and trap rocks. A. F. de Fourcroy and L. N. Vauquelin found titanium in the ferruginous gangue of the platinum deposits; and A. Damour, J. J. Berzelius and co-workers, and A. des Cloizeaux, in auriferous and platiniferous sands. T. Thomson, and R. D. Silva reported it in various sands; H. St. C. Deville, in bauxite; and J. Peschier, H. Rose, and L. N. Vauquelin, in many micas. L. Dieulafait reported it in various primordial rocks; and A. B. Griffiths found 0.68 per cent. TiO2 in the volcanic ash of Mt. Pelée; and P. A. Dufrénoy, in volcanic iron. It occurs in biotite (up to 5 per cent.), lepidomelane (up to 5 per cent.), titanolivine (up to 6 per cent.), pyroxenes (up to 5 per cent.), andradite (up to 10 per cent.), and in amphiboles (up to 9 per cent.). It has been found in felspars, dolomitic marble, nepheline, etc. Analyses have been reported by F. P. Dunnington, W. P. Jorissen, A. Harker, F. W. Clarke, H. S. Washington, W. M. Thornton, etc. It is a very common constituent of clays, and was noted in various clays by C. M. Kersten, W. F. SalmHorstmar, E. Riley, G. Vogt, C. Bischof, W. Aleksiejeff, F. P. Dunnington, etc. R. H. Brett and G. Bird found titanium in Hessian crucibles, but F. Wöhler and A. Schwarzenberg, O. L. Erdmann, and J. E. Herberger could not confirm this. Titanium was found in most soils examined by W. F. Salm-Horstmar, E. Jackson, F. P. Dunnington, G. F. McCaleb, E. Odernheimer, etc. W. O. Robinson and W. J. McCaughey found it in the soils of Chinese tea plantations. W. Biltz and

E. Marcus detected it in the clay of the Stassfurt salt beds. C. Baskerville found it in peat; E. Jackson, in coal ash; C. E. Wait, in bituminous coal (0-69-0.95 per cent.), and anthracite (up to 2:59 per cent.). L. Franck found some diamonds coloured with titanium; but H. Moissan did not find any in the ash of diamonds. This element is found in beds of hæmatite and magnetite, forming titaniferous magnetites. J. T. Singewald, C. U. Slocum, A. Vogel and C. Reischauer, etc., have discussed this subject. The occurrence of titanium in iron ores has been reported by A. Terreil, J. H. L. Vogt, E. Riley, H. Rose, R. Mushet, J. J. Nöggerath, T. Virlet d'Aoust, C. F. Rammelsberg, R. Thalén, G. W. Maynard, R. Akerman, E. J. Chapman, P. W. Shimer, A. Tamm, T. König and O. F. von der Pfordten, T. W. Hogg, A. Ledebur, J. F. Kemp, T. H. Cope, L. de Launey, N. P. Hulst, F. W. Clarke, P. Berthier, H. S. Washington, H. le Chatelier, etc. P. C. Grignon, and W. H. Wollaston found crystals of titanium, or rather titanium carbonitride, in the iron slags of Merthyr Tydvil, Wales; and they have been remarked by many others-C. Reinhardt, E. Franck, J. J. Nöggerath, B. Osann, H. von Fehling, M. Meyer, F. L. Hünefeld, T. W. Hogg, J. W. Döbereiner, G. F. Comstock, C. M. Kersten, etc. The crystals have also been observed in blast-furnace iron by F. A. Walchner, H. E. F. G. Sandberger, E. Emmons and W. R. Johnson, J. K. L. Zincken, A. Laugier, R. Akerman, C. F. B. Karsten, J. Nöggerath, L. Franck, J. L. Bell, H. Blumenau, H. D. Rogers, W. H. Harris and J. Stenson, J. Percy, B. Kerl, A. J. Rossi, C. F. Rammelsberg, D. Forbes, T. S. Hunt, G. W. Maynard, C. U. Slocum, J. Hörnhager, F. Kick and W. F. Gintl, W. Bettel, and E. Riley; and described in various treatises on the manufacture of iron and steel. The element has been reported in various iron alloys and in steel, by A. J. Rossi and co-workers, J. A. Paris, R. Mushet, E. Riley, O. Bauer, E. Bahlsen, J. H. Pratt, R. A. Hadfield, L. Guillet, C. U. Slocum, W. Venator, F. A. Fitzgerald, L. Treuheit, E. von Maltitz, P. H. Dudley, G. B. Waterhouse, A. E. Nordenskjöld, E. L. Gruner, A. Nies, A. Carnot and E. Goutal, etc. C. H. Pfaff reported titanium in a sample of commercial sulphuric acid. M. Mazade, and O. Henry found titanium in the mineral water of Nérac. E. Jackson, and C. E. Wait found this element in the ashes of many plants-the former found it in cotton-seed cake, sawdust, and in the seeds of French beans; the latter found apple- and pear-tree ash contained 0-21 per cent. TiO2; oak-wood ash, 0:31 per cent.; apples, 0'11 per cent.; cow-peas ash, O'01 per cent.; cotton-seed cake, 0.02 per cent.; and F. Traetta-Mosca found it spectroscopically in tobacco. E. O. von Lippmann found 0·12 per cent. of titanium in vinasse. G. O. Rees found titanium in human blood and in the suprarenal glands, but R. L. Marchand contradicted this; however, C. Baskerville found 0·0195 per cent. titanium in beefbone; 0013 per cent. in beef flesh; 00325 per cent. in human flesh; and a trace in human bone.

REFERENCES.

1 F. W. Clarke, Chem. News, 61. 31, 1890; Bull. U.S. Geol. Sur., 419, 1910; The Data of Geochemistry, Washington, 1914; T. L. Watson and S. Taber, Bull. Virginia Geol. Sur., 111. 10, 1913; J. Joly, Phil. Mag., (6), 17. 760, 1909; (6), 18. 140, 1909; (5), 20. 125, 353, 1910; A. Harker, Geol. Mag., (4), 6. 220, 1899; H. S. Washington, Prof. Paper U.S. Geol. Sur., 14. 106, 1903; Amer. Journ. Science, (4), 24. 217, 1907; F. W. Clarke and G. Steiger, Journ. Washington Acad., 4. 57, 1914; F. W. Clarke and H. S. Washington, Proc. Nat. Acad. Sciences, 8. 108, 1922; The Composition of the Earth's Crust, Washington, 1924; J. H. L. Vogt, Zeit. prakt. Geol., 6. 225, 314, 377, 413, 1898; 7. 10, 274, 1899; J. F. Kemp, Econ. Geol., 1. 207, 1905; L. Moser, Ester. Chem. Ztg., 26. 67, 1923.

2 A. Fowler, Proc. Roy. Soc., 79. A, 509, 1907; J. N. Lockyer and F. E. Baxandall, ib., 74. 255, 1905; H. L. Cortie, Astrophys. Journ., 20. 253, 1904; W. S. Adams, ib., 30. 86, 1909; W. M. Mitchell, ib., 22. 4, 1905; F. W. Dyson, Phil. Trans., 206. A, 493, 1906; A. J. Angström, Recherches sur le spectre normal du soleil, Upsala, 1868; G. P. Merrill and H. N. Stokes, Proc. Washington Acad., 2. 41, 1900; E. E. Howell, W. F. Hillebrand, and G. P. Merrill, Amer. Journ. Science, (3), 47. 430, 1894; F. Cornu, Ann. Scient. École Norm. Sup., (2), 9. 21, 1880; Compt. Rend., 86. 101, 315, 530, 983, 1878; A. Daubrée, ib., 72. 200, 1866; H. Deslandres, ib., 141.

409, 1905; R. Thalén, Ann. Chim. Phys., (4), 18. 202, 1869; G. Salet, ib., (4), 18. 222, 1869; C. F. Rammelsberg, Pogg. Ann., 73. 585, 1848; M. N. Saha, Phil. Mag., (6), 40. 472, 1920. 3 J. C. G. de Marignac, Bibl. Univ. Genève, 26. 89, 1866.

4 T. L. Watson, Amer. Min., 10. 1, 1925.

5 J. T. Lowitz, Crell's Ann., i, 183, 1799; Scherer's Journ., 2. 210, 1799; P. C. Abildgaard, ib., 2. 502, 1799; A. G. Ekeberg, ib., 14. 348, 1805; M. H. Klaproth, Leonhard's Taschenbuch, 5. 163, 1811; L. Pansner, ib., 11. 309, 1817; A. Breithaupt, Scherer's Ann., 7. 200, 1821; G. Ulrich, Berg. Hütt. Ztg., 12. 254, 1853; Anon., Bull. Imp. Inst., 9. 134, 1911; H. Thürach, Über das Vorkommen mikroskopischer Zirkone und Titan-Mineralien in den Gesteinen, Würzburg, 1884; P. Holland, Chem. News, 59. 27, 1889; W. A. Noyes, Journ. Anal. App. Chem., 5. 39; C. U. Slocum, Min. World, 36. 123, 1912; Anon., Bull. Imp. Inst., 15. 82, 1917.

T. Scheerer, Liebig's Ann., 92. 178, 1854; Chem. News, 1. 143, 1860; E. Jackson, ib., 47. 157, 1883; R. Apjohn, ib., 26. 183, 1872; A. B. Griffiths, ib., 88. 231, 1993; Bull. Soc. Chim., (3), 29. 1117, 1903; E. Riley, ib., 8. 233, 1863; Journ. Chem. Soc., 12. 13, 1860; H. Rose, Gilbert's Ann., 70. 315, 1822; Pogg. Ann., 1. 76, 1824; Ann. Chim. Phys., (2), 28. 105, 1825; A. Sauer, Zeit. deut. geol. Ges., 37. 445, 1884; Neues Jahrb. Min., 569, 1879; L. van Werweke, ib., ii, 275, 1880; A. Stelzner, ib., i, 229, 1882; G. Vogt, ib., i, 97, 1889; E. Cohen, ib., ii, 23, 1880; Neues Jahrb. Min. B.B., 2. 369, 1882; M. F. Heddle, Trans. Roy. Soc. Edin., 30. 427, 1883; Proc. Roy. Soc. Edin., 11. 549, 1882; T. Thomson, ib., 6. 253, 1807; Phil. Mag., 35. 100, 1807; P. Jannasch and J. H. Kloos, Tschermak's Mitt., (2), 3. 97, 1880; F. Knapp, Neues Jahrb. Min., ii, 381, 1881; Die doleritischen Gesteine des Frauenberges bei Schlüchtern in Hessen, Würzburg, 1880; V. Roussel, Compt. Rend., 77. 1103, 1873; H. Moissan, ib., 116. 460, 1893; L. Dieulafait, ib., 93. 804, 1881; R. D. Silva, ib., 65. 207, 1867; C. M. Kersten, Pogg. Ann., 3. 175, 1825; 49. 229, 1840; Journ. prakt. Chem., (1), 1. 363, 1834; (1), 20. 373, 1840; F. P. Dunnington, Amer. Journ. Science, (3), 42. 491, 1891; Chem. News, 65. 65, 1892; 76. 221, 1897; Zeit. anorg. Chem., 1. 387, 1892; Journ. Amer. Chem. Soc., 13. 210, 1892; Neues Jahrb. Min., i, 97, 1889; Zeit. angew. Chem., 16. 595, 1903; La Cer., 6. 68, 1903; W. Aleksiejeff, Zapisky Imp. Russ. Tech. Obschtsch., 30. 6, 7, 1896; C. Bischof, Dingler's Journ., 248. 167, 1883; W. P. Jorissen, Bull. Acad. Belg., 902, 1903; R. H. Brett and G. Bird, Phil. Mag., (3), 6. 113, 1835; F. Wöhler and A. Schwarzenberg, ib., 35. 507, 527, 1835; O. L. Erdmann, Journ prakt. Chem., (1), 4. 496, 1835; W. F. Salm-Horstmar, ib., (1), 54. 129, 1851; J. E. Herberger, Repert. Pharm., 55. 62, 1836; J. J. Berzelius, G. H. Frick, and F. Wöhler, Pogg. Ann., 31. 674, 1834; G. F. McCaleb, Amer. Chem. Journ., 10. 36, 1888; C. E. Wait, Journ. Amer. Chem. Soc., 18. 402, 1896; C. Baskerville, ib., 21. 706, 1099, 1899; L. Franck, Stahl Eisen, 17. 449, 1897; W. M. Thornton, Amer. Journ. Science, (4), 31. 218, 1911; H. S. Washington, ib., (4), 24. 217, 1907; Prof. Paper U.S. Geol. Sur., 14. 106, 1903; F. W. Clarke, Bull. U.S. Geol. Sur., 419, 1910; A. Harker, Geol. Mag., (4), 6. 220, 1899; E. Odernheimer, Tonind. Ztg., 27. 1475, 1903; W. Biltz and E. Marcus, Zeit. anorg. Chem., 68. 91, 1910; W. O. Robinson and W. J. McCaughey, Journ. Ind. Eng. Chem., 2. 462, 1910; A. F. de Fourcroy and L. N. Vauquelin, Ann. Chim. Phys., (1), 49. 188, 1804; L. N. Vauquelin, ib., (2), 27. 67, 1824; H. St. C. Deville, ib., (3), 61. 311, 1861; A. Damour and A. des Cloizeaux, ib., (3), 51. 445, 1857; J. Peschier, ib., (2), 21. 203, 1822; P. A. Dufrénoy, ib., (2), 67. 251, 1837.

7 A. Terreil, Compt. Rend., 84. 407, 1877; A. Carnot and E. Goutal, ib., 125. 213, 1897; C. U. Slocum, Min. Journ., 35. 1260, 1911; 36. 123, 1912; J. T. Singewald, The Titaniferous Iron Ores in the United States, Washington, 1913; E. Riley, Journ. Chem. Soc., 12. 13, 1860; 16. 387, 1863; Chem. News, 8. 233, 1863; W. Bettel, ib., 28. 93, 1873; W. H. Harris and J. Stenson, ib., 1. 274, 1859; A. A. and S. D. Hayes, ib., 19. 163, 1869; J. H. L. Vogt, Zeit. prakt. Geol., 8. 233, 370, 1900; 9. 9, 180, 1901; Ber. Intern. Cong. App. Chem., 1. 741, 1904; J. Hörnhager, Ester. Zeit. Berg. Hütt., 52. 571, 1904; A. J. Rossi, Journ. Amer. Chem. Soc., 12. 91, 1890; Journ. Franklin Inst., 154. 241, 1903; Trans. Amer. Inst. Min. Eng., 22. 570, 1901; A. Vogel and C. Reischauer, Anz. Gelehrte München, 42. 7, 1856; A. Nies, Versl. deut. Nat. Aerzte, 46. 122, 1873; O. Bauer, Stahl Eisen, 24. 1058, 1904; H. Rose, Ann. Mines, (1), 12. 300, 1826; (4), 8. 701, 1845; P. Berthier, ib., (3), 3. 41, 1833; J. J. Nöggerath, Sitzber. Ver. Rheinl. Westphalen, 18. 77, 1861; Ann. Mines, (6), 8. 247, 1865; L. de Launey, ib., (10), 3. 86, 1903; J. W. Döbereiner, ib., (3), 9. 350, 1836; H. von Fehling, Württemburg. Jahresh., 2. 255, 1847; T. Virlet d'Aoust, Compt. Rend., 22. 505, 1846; Bull. Geol. Soc., (1), 3. 425, 1846; R. Thalén, Ann. Chim. Phys., (4), 18. 222, 1869; R. Akerman, Jern-Kontorets Ann., 32. 79, 1877; Iron, 6. 450, 1875; A. Tamm, ib., 41. 127, 1886; E. J. Chapman, Trans. Roy. Soc. Canada, 2. 159, 1884; Journ. Iron Steel Inst., 26. ii, 613, 1884; T. H. Cope, ib., 61. i, 426, 1902; Journ. Liverpool Geol. Soc., 9. 208, 1902; P. W. Shimei, Trans. Amer. Inst. Min. Eng., 15. 455, 1886; H. S. Washington, ib., 39. 735, 1908; T König and O. F. von der Pfordten, Ber., 22. 1485, 1889; T. W. Hogg, B.A. Rep., 721, 1893; A. Ledebur, Stahl Eisen, 14. 810, 1894; E. Bahlsen, ib., 22. 326, 1902; W. Venator, ib., 28. 259, 1908; 30. 650, 1910; L. Treuheit, ib., 29. 1023, 1909; E. von Maltitz, ib., 29. 1593, 1909; J. F. Kemp, Ann. Rep. U.S. Geol. Sur., 19. iii, 371, 1887; School Mines Quart., 21. 1, 1899; N. P. Hulst, Iron Trade Rev., 37. 92, 1904; F. W. Clarke, Data of Geochemistry, Washington, 1920; H. le Chatelier, Rev. Mét., 8. 367, 1911; L. Guillet, ib., 1. 506, 1904; Anon., Bull. Imp. Inst., 9. 134, 1911; C. Reinhardt, Zeit. angew. Chem., 1. 124, 1888; E. Emmons and W. R. Johnson, Report of the State Geologist of New York, New York, 1840; C. F. B. Karsten, Eisenhüttenkunde, 1. 533, 1841; 2. 55, 1841; Pogg. Ann., 27. 160, 1841; J. L Bell, B.A. Rep., 730, 1863; Principles of the Manufacture of Iron and Steel,

London, 157, 167, 1884; J. H. Pratt, Mineral Resources U.S.A., 309, 1903; R. A. Hadfield, Iron Steel Met., 7. 3, 1904; F. A. Fitzgerald, Trans. Amer. Electrochem. Soc., 12. 165, 1907; Elektrochem. Met. Ind., 6. 494, 1908; 7. 129, 1909; Iron Age, 88. 1284, 1909; G. B. Waterhouse, ib., 20. 265, 1911; Proc. Amer. Soc. Testing Materials, 10. 201, 1910; Iron Age, 80. 1306, 1901; P. H. Dudley, Mech. Eng., 27. 463, 1910; A. J. Rossi, J. MacNaughton, and W. D. Edmonds, Brit. Pat. No. 3582, 1901; J. A. Paris, Trans. Cornwall Geol. Soc., 1. 226, 1818; Gilbert's Ann., 59. 226, 1818; R. Mushet, Chem. News, 1. 231, 276, 1860; 4. 11, 1861; Brit. Pat. Nos. 703, 1115, 1150, 1151, 1859; 3045, 1860; 2609, 1861; Dingler's Journ., 155. 317, 1860; 156. 76. 1860; 164. 74, 1862; 166. 156, 1862; E. L. Gruner, ib., 195. 336, 1870; Deut. Ind. Ztg., 14, 97, 1873; Ann. Mines, (6), 17. 346, 1870; Compt. Rend., 70. 571, 1870; Chem. News, 27. 71, 1873; Bull. Soc. Nat. Ind., (2), 20. 84, 1873; A. E. Nordenskjöld, Pogg. Ann., 122. 615, 1864; C. M. Kersten, ib., 3. 175, 1825; 49. 229, 1840; Journ. prakt. Chem., (1), 1. 636, 1834; (1), 20. 373, 1840; C. H. Pfaff, Schweigger's Journ., 18. 283, 1816; F. A. Walchner, Pogg. Ann., 3. 176, 1825; Schweigger's Journ., 41. 80, 1824; 44. 47, 1825; F. L. Hünefeld, Ann. Mines, (2), 5. 316, 1829; Phil. Mag., (2), 3. 121, 1828; Schweigger's Journ., 50. 332, 1827; J. J. Nöggerath, ib., 65. 385, 1832; Karsten's Arch., 4. 351, 1825; M. Meyer, ib.. 13. 272, 1828; J. K. L. Zincken, Pogg. Ann., 3. 175, 1825; H. E. F. G. Sandberger, ib., 83. 596, 1851; Jahrb. Nass. Ver. Nat., 131, 1851; D. Forbes, Journ. Iron Steel Inst., 4. i, 158, 1872; A. Laugier, Soc. Philomath., 102, 1825; Trommsdorff's Journ. Pharm., 12. 253, 1826; H. Blumenau, Liebig's Ann., 67. 122, 1848; F. Kick and W. F. Gintl, Deut. Ind. Ztg., 13. 346, 1872; W. H. Wollaston, Phil. Trans., 113. 17, 400, 1823; Edin. Phil. Journ., 9. 403, 1823; P. C. Grignon, Mémoires de physique sur l'art de fabriquer le fer, Paris, 1775; W. F. Salm Horstmar, Journ. prakt. Chem., (1), 54. 129, 1851; C. U. Slocum, Electrochem. Met. Ind., 7. 128, 1909; Iron Trade Rev., 44. 408, 1909; Iron Age, 86. 1393, 1907; Chem. Met. Ind., 7. 128, 1909; Min. World, 35. 1260, 1911; Trans. Amer. Electrochem. Soc., 20. 265, 1911; L. Franck, Chem. Zty., 21. 520, 1897; Stahl Eisen, 17 449, 1897; T. S. Hunt, Eng. Min. Journ., 13. 148, 1872; G. W. Maynard, ib., 13. 275, 1872; Journ. Iron Steel Inst., 7. 109, 1874; B. Osann, Stahl Eisen, 41. 1487, 1921; G. F. Comstock, Chem. Met. Engg., 26. 165, 1922; H. D. Rogers, ib., (4), 8. 700, 1845; Instit., 60, 1844; B. Kerl, Handbuch der metallurgischen Hüttenkunde, Freiberg, 1. 795, 1861; C. F. Rammelsberg, Lehrbuch der chemischen Metallurgie, Berlin, 140, 1865; Pogg. Ann., 104. 497, 1860; J. Percy, Metallurgy of Iron and Steel, London, 164, 551, 570, 1864; M. Mazade, Compt. Rend., 34. 952, 1852; O. Henry, Journ. Pharm. Chim., (3), 24. 305, 1853; Phil. Mag., (4), 7. 149, 1853; G. O. Rees, ib., (3), 5. 398, 1834; (3), 6. 201, 1835; C. E. Wait, Journ. Amer. Chem. Soc., 18. 402, 1896; C. Baskerville, ib., 21. 1099, 1899; E. O. von Lippmann, Ber., 30. 3037, 1897; R. L. Marchand, Journ. prakt. Chem., (1), 16. 372, 1839; Liebig's Ann., 32. 324, 1839; E. Jackson, Chem. News, 47. 157, 1883; F. Traetta-Mosca, Gazz. Chim. Ital., 43 ii, 437, 1913.

§ 3. The Extraction of Titania

In an old process used by H. Rose 1 for extracting titanium dioxide or titania from rutile or titaniferous iron-ore, the mineral was heated to redness in a stream of hydrogen sulphide, and the iron sulphide removed by extraction with conc. hydrochloric acid, and the hydrated titania well washed. To remove all the iron, a repetition of the process is necessary. He also converted the iron into soluble sulphide by fusing the powdered mineral with sulphur, extracted the mass with hydrochloric acid, and treated the washed product with hydrogen sulphide as just indicated. H. Rose extracted rutile or titaniferous iron ore with hydrochloric acid and fused it with over three times its weight of potassium carbonate, or better, according to A. Laugier, with twice its weight of potassium hydroxide. The cold mass was washed with water until the acid potassium titanate began to pass through the filter-paper. The washed residue contained ferric oxide and potassium titanate. C. Friedel and J. Guérin volatilized the iron as chloride by heating the mixed precipitate in a current of hydrogen chloride and chlorine. To obtain titanium dioxide of a very high degree of purity, A. Stähler, and O. F. von der Pfordten recommended converting the oxide to the chloride-vide infra; treating the aq. soln. with ammonia; and igniting the washed precipitate.

There are many ways of separating the iron and titanium oxides from the soln. of the residue in cold conc. hydrochloric acid. If this soln. be boiled, the titanium chloride is hydrolyzed and titanium hydroxide is precipitated. According to H. Rose, the hydrolysis is facilitated by the addition of sulphuric acid-vide infra, action of sulphuric acid on titanium dioxide. The precipitate is still contaminated with iron. If, however, the iron be reduced to the ferrous condition before the hydrolysis, it will not be precipitated with the titanium. P. Berthier recommended sulphur dioxide or ammonium sulphide

« PreviousContinue »