Page images
PDF
EPUB

tioned to our touch; so that in respect of us their action does not go so far as to produce sensible warmth, but in respect of some other bodies they have the effect of heat.

To the 2nd. 4. Try the following experiment. Take a glass fashioned in a contrary manner to a common burning-glass, and placing it between your hand and the rays of the sun, observe whether it diminishes the heat of the sun, as a burning-glass increases and strengthens it. For it is evident in the case of optical rays that according as the glass is made thicker or thinner in the middle as compared with the sides, so do the objects seen through it appear more spread or more contracted. Observe therefore whether the same is the case with heat.

To the 2nd. 5. Let the experiment be carefully tried, whether by means of the most powerful and best constructed burning glasses, the rays of the moon can be so, caught and collected as to produce even the least degree of warmth. But should this degree of warmth prove too subtle and weak to be perceived and apprehended by the touch, recourse must be had to those glasses which indicate the state of the atmosphere in respect of heat and cold. Thus, let the rays of the moon fall through a burning-glass on the top of a glass of this kind, and then observe whether there ensues a sinking of the water through warmth.

To the 2nd. 6. Let a burning-glass also be tried with a heat that does not emit rays or light, as that of iron or stone heated but not ignited, boiling water, and the like; and observe whether there ensue an increase of the heat, as in the case of the sun's rays.

To the 2nd. 7. Let a burning-glass also be tried with common flame.

To the 3rd. 8. Comets (if we are to reckon these too among meteors) are not found to exert a constant or manifest effect in increasing the heat of the season, though it is observed that they are often followed by droughts. Moreover bright beams and pillars and openings in the heavens appear more frequently in winter than in summer time, and chiefly during the intensest cold, but always accompanied by dry weather. Lightning, however, and coruscations and thunder, seldom occur in the winter, but about the time of great heat. Falling stars, as they are called, are commonly supposed to consist rather of some bright and lighted viscous substance, than to be of any strong fiery nature. But on this point let further inquiry be made.

To the 4th.

9. There are certain coruscations which give light but do not burn. And these always come without thunder.

To the 5th.

10. Eructations and eruptions of flame are found no less in cold than in warm countries, as in Iceland and Greenland. In cold countries too the trees are in many cases more inflammable and more pitchy and resinous than in warm; as the fir, pine, and others. The situations however and the nature of the soil in which eruptions of this kind usually occur have not been carefully enough ascertained to enable us to subjoin a Negative to this Affirmative Instance.

To the 6th.

warm;

And

11. All flame is in all cases more or less nor is there any Negative to be subjoined. yet they say that the ignis fatuus (as it is called), which sometimes even settles on a wall, has not much heat; perhaps as much as the flame of spirit of wine, which is mild and soft. But still milder must that flame be, which according to certain grave and trust

worthy histories has been seen shining about the head and locks of boys and girls, without at all burning the hair, but softly playing round it. It is also most certain that about a horse, when sweating on the road, there is sometimes seen at night, and in clear weather, a sort of luminous appearance without any manifest heat. And it is a well known fact, and looked upon as a sort of miracle, that a few years ago a girl's stomacher, on being slightly shaken or rubbed, emitted sparks; which was caused perhaps by some alum or salts used in the dye, that stood somewhat thick and formed a crust, and were broken by the friction. It is also most

certain that all sugar, whether refined or raw, provided only it be somewhat hard, sparkles when broken or scraped with a knife in the dark. In like manner sea and salt water is sometimes found to sparkle by night when struck violently by oars. And in storms too at night time, the foam of the sea when violently agitated emits sparks, and this sparkling the Spaniards call Sea Lung. With regard to the heat of the flame which was called by ancient sailors Castor and Pollux, and by moderns St. Elmo's Fire, no sufficient investigation thereof has been made.

To the 7th. 12. Every body ignited so as to turn to a fiery red, even if unaccompanied by flame, is always hot; neither is there any Negative to be subjoined to this Affirmative. But that which comes nearest seems to be rotten wood, which shines by night, and yet is not found to be hot; and the putrifying scales of fish, which also shine in the dark, and yet are not warm to the touch; nor again is the body of the glow-worm, or of the fly called Luciola, found to be warm to the touch.

To the 8th. 13. In what situation and kind of soil warm baths usually spring, has not been sufficiently examined; and therefore no Negative is subjoined.

To the 9th. 14. To warm liquids I subjoin the Negative Instance of liquid itself in its natural state. For we find no tangible liquid which is warm in its own nature and remains so constantly; but the warmth is an adventitious nature, superinduced only for the time being; so that the liquids which in power and operation are hottest, as spirit of wine, chemical oil of spices, oil of vitriol and sulphur, and the like, which burn after a while, are at first cold to the touch. The water of natural warm baths on the other hand, if received into a vessel and separated from its springs, cools just like water that has been heated on a fire. But it is true that oily substances are less cold to the touch than watery, oil being less cold than water, and silk than linen. But this belongs to the Table of Degrees of Cold.

To the 10th. 15. In like manner to hot vapour I subjoin as a Negative the nature of vapour itself, such as we find it with us. For exhalations from oily substances, though easily inflammable, are yet not found to be warm, unless newly exhaled from the warm body.

To the 10th. 16. In like manner I subjoin as a Negative to hot air the nature of air itself. For we do not find here any air that is warm, unless it has either been confined, or compressed, or manifestly warmed by the sun, fire, or some other warm substance.

To the 11th. 17. I here subjoin the Negative of colder weather than is suitable to the season of the year, which we find occurs during east and north winds; just as we have weather of the opposite kind with the

south and west winds. So a tendency to rain, especially in winter time, accompanies warm weather; while frost accompanies cold.

To the 12th. 18. Here I subjoin the Negative of air confined in caverns during the summer. But the subject of air in confinement should by all means be more diligently examined. For in the first place it may well be matter of doubt what is the nature of air in itself with regard to heat and cold. For air manifestly receives warmth from the influence of the heavenly bodies, and cold perhaps from the exhalations of the earth; and again in the middle region of air, as it is called, from cold vapours and snow; so that no opinion can be formed as to the nature of air from the examination of air that is at large and exposed; but a truer judgment might be made by examining it when confined. It is however necessary for the air to be confined in a vessel of such material as will not itself communicate warmth or cold to the air by its own nature, nor readily admit the influence of the outer atmosphere. Let the experiment therefore be made in an earthen jar wrapped round with many folds of leather to protect it from the outward air, and let the vessel remain tightly closed for three or four days; then open the vessel and test the degree of heat or cold by applying either the hand or a graduated glass.

To the 13th. 19. In like manner a doubt suggests itself, whether the warmth in wool, skins, feathers, and the like, proceeds from a faint degree of heat inherent in them, as being excretions from animals; or from a certain fat and oiliness, which is of a nature akin to warmth; or simply, as surmised in the preceding article, from the confinement and separation of the air.

« PreviousContinue »