Page images
PDF
EPUB

from west to east; which old philosophers attribute to the planets; also to the starry sphere; but Copernicus and his followers to the earth as well; and let us inquire whether any such motion be found in nature, or whether it be not rather a thing invented and supposed for the abbreviation and convenience of calculation, and for the sake of that pretty notion of explaining celestial motions by perfect circles. For this motion in the heavens is by no means proved to be true and real, either by the failing of a planet to return in its diurnal motion to the same point of the starry sphere, or by this, that the poles of the zodiac differ from the poles of the world; to which two things we owe this idea of motion. For the first phenomenon is well accounted for by supposing that the fixed stars outrun the planets, and leave them behind; the second, by supposing a motion in spiral lines; so that the inequality of return and the declination to the tropics may rather be modifications of the one diurnal motion, than motions contrary or round different poles. And most certain it is, if one may but play the plain man for a moment (dismissing the fancies of astronomers and schoolmen, whose way it is to overrule the senses, often without reason, and to prefer what is obscure), that this motion does actually appear to the sense such as I have described; for I once had a machine made with iron wires to represent it.

The following would be an Instance of the Fingerpost on this subject. If it be found in any history worthy of credit, that there has been any comet, whether high or low, which has not revolved in manifest agreement (however irregular) with the diurnal motion, but has revolved in the opposite direction, then certainly

we may set down thus much as established, that there may be in nature some such motion. But if nothing of the kind can be found, it must be regarded as questionable, and recourse be had to other Instances of the Fingerpost about it.

Again, let the nature in question be Weight or Heaviness. Here the road will branch into two, thus. It must needs be that heavy and weighty bodies either tend of their own nature to the centre of the earth, by reason of their proper configuration; or else that they are attracted by the mass and body of earth itself as by the congregation of kindred substances, and move to it by sympathy. If the latter of these be the cause, it follows that the nearer heavy bodies approach to the earth, the more rapid and violent is their motion to it; and that the further they are from the earth, the feebler and more tardy is their motion (as is the case with magnetic attraction); and that this action is confined to certain limits; so that if they were removed to such a distance from the earth that the earth's virtue could not act upon them, they would remain suspended like the earth itself, and not fall at all. With regard to this then, the following would be an Instance of the Fingerpost. Take a clock moved by leaden weights, and another moved by the compression of an iron spring; let them be exactly adjusted, that one go not faster or slower than the other; then place the clock moving by weights on the top of a very high steeple, keeping the other down below; and observe carefully whether the clock on the steeple goes more slowly than it did, on account of the diminished virtue of its weights. Repeat the experiment in the bottom of a mine, sunk to a great depth below the ground; that is,

observe whether the clock so placed does not go faster than it did, on account of the increased virtue of its weights. If the virtue of the weights is found to be diminished on the steeple, and increased in the mine, we may take the attraction of the mass of the earth as the cause of weight.

Again, let the nature investigated be the Polarity of the Iron Needle when touched with the magnet. With regard to this nature the road will branch into two, thus. Either the touch of the magnet of itself invests the iron with polarity to the north and south; or it simply excites and prepares the iron, while the actual motion is communicated by the presence of the earth; as Gilbert thinks, and labours so strenuously to prove. To this point therefore tend the observations which he has collected with great sagacity and industry. One is, that an iron nail, which has lain for a long time in a direction between north and south, gathers polarity without the touch of the magnet by its long continuance in this position; as if the earth itself, which on account of the distance acts but feebly (the surface or outer crust of the earth being destitute, as he insists, of magnetic power), were yet able by this long continuance to supply the touch of the magnet, and excite the iron, and then shape and turn it when excited. Another is, that if iron that has been heated white-hot, be while cooling laid length-wise between north and south, it also acquires polarity without the touch of the magnet; as if the parts of the iron, set in motion by ignition, and afterwards recovering themselves, were at the very moment of cooling more susceptible and sensitive of the virtue emanating from the earth than at other times, and thus became excited by it. But these

things, though well observed, do not quite prove what he asserts.

Now with regard to this question an Instance of the Fingerpost would be the following. Take a magnetic globe and mark its poles; and set the poles of the globe towards the east and west, not towards the north and south, and let them remain so; then place at the top an untouched iron needle, and allow it to remain in this position for six or seven days.

The needle while over the magnet (for on this point there is no dispute) will leave the poles of the earth and turn towards the poles of the magnet; and therefore, as long as it remains thus, it points east and west. Now if it be found that the needle, on being removed from the magnet and placed on a pivot, either starts off at once to the north and south, or gradually turns in that direction, then the presence of the earth must be admitted as the cause; but if it either points as before east and west, or loses its polarity, this cause must be regarded as questionable, and further inquiry must be made.

Again, let the nature in question be the Corporeal Substance of the Moon; that is, let us inquire whether it be rare, consisting of flame or air, as most of the old philosophers opined; or dense and solid, as Gilbert and many moderns, with some ancients, maintain. The reasons for the latter opinion rest chiefly on this, that the moon reflects the rays of the sun; nor does light seem to be reflected except by solid bodies. Therefore Instances of the Fingerpost on this question will (if any) be those which prove that reflexion may take place from a rare body, as flame, provided it be of sufficient denseness. Certainly one cause of twilight,

among others, is the reflexion of the rays of the sun from the upper part of the air. Likewise we occasionally see rays of the sun in fine evenings reflected from the fringes of dewy clouds with a splendour not inferior to that reflected from the body of the moon, but brighter and more gorgeous; and yet there is no proof that these clouds have coalesced into a dense body of water. Also we observe that the dark air behind a window at night reflects the light of a candle, just as a dense body would. We should also try the experiment of allowing the sun's rays to shine through a hole on some dusky blueish flame. For indeed the open rays of the sun, falling on the duller kinds of flame, appear to deaden them, so that they seem more like white smoke than flame. These are what occur to me at present as Instances of the Fingerpost, with reference to this question; and better may perhaps be found. But it should always be observed that reflexion from flame is not to be expected, except from a flame of some depth; for otherwise it borders on transparency. This however may be set down as certain, that light on an even body is always either received and transmitted or reflected.

[ocr errors]

Again let the nature in question be the Motion of Projectiles (darts, arrows, balls, &c.) through the air. This motion the schoolmen, as their way is, explain in a very careless manner; thinking it enough to call it a violent motion as distinguished from what they call a natural motion; and to account for the first percussion or impulse by the axiom that two bodies cannot occupy the same place on account of the impenetrability of matter; and not troubling themselves at all how the motion proceeds afterwards. But with refer

« PreviousContinue »