Page images
PDF
EPUB

difficult as to measure liquids in porous vessels. To determine the latent heat of steam we must condense a certain amount of the steam in a known weight of water, and then observe the rise of temperature of the water. But while we are carrying out the experiment, part of the heat will escape by radiation and conduction from the condensing vessel or calorimeter. We may indeed reduce the loss of heat by using vessels with double sides and bright surfaces, surrounded with swans-down wool or other non-conducting materials; and we may also avoid raising the temperature of the water much above that of the surrounding air. Yet we cannot by any such means render the loss of heat inconsiderable. Rumford ingeniously proposed to reduce the loss to zero by commencing the experiment when the temperature of the calorimeter is as much below that of the air as it is at the end of the experiment above it. Thus the vessel will first gain and then lose by radiation and conduction, and these opposite errors will approximately balance each other. But Regnault has shown that the loss and gain do not proceed by exactly the same laws, so that in very accurate investigations Rumford's method is not sufficient. There remains the method of correction which was beautifully carried out by Regnault in his determination of the latent heat of steam. He employed two calorimeters, made in exactly the same way and alternately used to condense a certain amount of steam, so that while one was measuring the latent heat, the other calorimeter was engaged in determining the corrections to be applied, whether on account of radiation and conduction from the vessel or on account of heat reaching the vessel by means of the connecting pipes.1

4. Method of Compensation.

There are many cases in which a cause of error cannot conveniently be rendered null, and is yet beyond the reach of the third method, that of calculating the requisite correction from independent observations. The magnitude

1 Graham's Chemical Reports and Memoirs, Cavendish Society, Pp. 247, 268, &c.

of an error may be subject to continual variations, on account of change of weather, or other fickle cirumstances beyond our control. It may either be impracticable to observe the variation of those circumstances in sufficient detail, or, if observed, the calculation of the amount of error may be subject to doubt. In these cases, and only in these cases, it will be desirable to invent some artificial mode of counterpoising the variable error against an equal error subject to exactly the same variation.

We cannot weigh an object with great accuracy unless we make a correction for the weight of the air displaced by the object, and add this to the apparent weight. In very accurate investigations relating to standard weights, it is usual to note the barometer and thermometer at the time of making a weighing, and, from the measured bulks of the objects compared, to calculate the weight of air displaced; the third method in fact is adopted. To make these calculations in the frequent weighings requisite in chemical analysis would be exceedingly laborious, hence the correction is usually neglected. But when the chemist wishes to weigh gas contained in a large glass globe for the purpose of determining its specific gravity, the correction becomes of much importance. Hence chemists avoid at once the error, and the labour of correcting it, by attaching to the opposite scale of the balance a dummy sealed glass globe of equal capacity to that containing the gas to be weighed, noting only the difference of weight when the operating globe is full and empty. The correction, being the same for both globes, may be entirely neglected.

A device of nearly the same kind is employed in the construction of galvanometers which measure the force of an electric current by the deflection of a suspended magnetic needle. The resistance of the needle is partly due to the directive influence of the earth's magnetism, and partly to the torsion of the thread. But the former force may often be inconveniently great as well as troublesome to determine for different inclinations. Hence it is customary to connect together two equally magnetised needles, with their poles pointing in opposite directions,

1

Regnault's Cours Elémentaire de Chimie, 1851, vol i. p. 141.

one needle being within and another without the coil of wire. As regards the earth's magnetism, the needles are now astatic or indifferent, the tendency of one needle towards the pole being balanced by that of the other.

An elegant instance of the elimination of a disturbing force by compensation is found in Faraday's researches upon the magnetism of gases. To observe the magnetic attraction or repulsion of a gas seems impossible unless we enclose the gas in an envelope, probably best made of glass. But any such envelope is sure to be more or less affected by the magnet, so that it becomes difficult to distinguish between three forces which enter into the problem, namely, the magnetism of the gas in question, that of the envelope, and that of the surrounding atmospheric air. Faraday avoided all difficulties by employing two equal and similar glass tubes connected together, and so suspended from the arm of a torsion balance that the tubes were in similar parts of the magnetic field. One tube being filled with nitrogen and the other with oxygen, it was found that the oxygen seemed to be attracted and the nitrogen repelled. The suspending thread of the balance was then turned until the force of torsion restored the tubes to their original places, where the magnetism of the tubes as well as that of the surrounding air, being the same and in the opposite directions upon the two tubes, could not produce any interference. The force required to restore the tubes was measured by the amount of torsion of the thread, and it indicated correctly the dif ference between the attractive powers of oxygen and nitrogen. The oxygen was then withdrawn from one of the tubes, and a second experiment made, so as to compare a vacuum with nitrogen. No force was now required to maintain the tubes in their places, so that nitrogen was found to be, approximately speaking, indifferent to the magnet, that is, neither magnetic nor diamagnetic, while oxygen was proved to be positively magnetic. It required the highest experimental skill on the part of Faraday and Tyndall, to distinguish between what is apparent and real in magnetic attraction and repulsion.

Experience alone can finally decide when a com

1 Tyndall's Faraday, pp. 114, 115.

As a

pensating arrangement is conducive to accuracy. general rule mechanical compensation is the last resource, and in the more accurate observations it is likely to introduce more uncertainty than it removes. A multitude of instruments involving mechanical compensation have been devised, but they are usually of an unscientific character, because the errors compensated can be more accurately determined and allowed for. But there are exceptions to this rule, and it seems to be proved that in the delicate and tiresome operation of measuring a base line, invariable bars, compensated for expansion by heat, give the most accurate results. This arises from the fact that it is very difficult to determine accurately the temperature of the measuring bars under varying conditions of weather and manipulation. Again, the last refinement in the measurement of time at Greenwich Observatory depends upon mechanical compensation. Sir George Airy, observing that the standard clock increased. its losing rate 0'30 second for an increase of one inch in atmospheric pressure, placed a magnet moved by a barometer in such a position below the pendulum, as almost entirely to neutralise this cause of irregularity. The thorough remedy, however, would be to remove the cause of error altogether by placing the clock in a vacuous case. We thus see that the choice of one or other mode of eliminating an error depends entirely upon circumstances and the object in view; but we may safely lay down the following conclusions. First of all, seek to avoid the source of error altogether if it can be conveniently done; if not, make the experiment so that the error may be as small, but more especially as constant, as possible. If the means are at hand for determining its amount by calculation from other experiments and principles of science, allow the error to exist and make a correction in the result. If this cannot be accurately done or involves too much labour for the purposes in view, then throw in a counteracting error which shall as nearly as possible be of equal amount in all circumstances with that to be eliminated. There yet remains, however, one important method, that of Reversal, 1 See, for instance, the Compensated Sympiesometer, Philosophical Magazine, 4th Series, vol. xxxix. p. 371.

2 Grant, History of Physical Astronomy, pp. 146, 147.

A A

which will form an appropriate transition to the succeeding chapters on the Method of Mean Results and the Law of Error.

5. Method of Reversal.

The fifth method of eliminating error is most potent and satisfactory when it can be applied, but it requires that we shall be able to reverse the apparatus and mode of procedure, so as to make the interfering cause act alternately in opposite directions. If we can get two experimental results, one of which is as much too great as the other is too small, the error is equal to half the difference, and the true result is the mean of the two apparent results. It is an unavoidable defect of the chemical balance, for instance, that the points of suspension of the pans cannot be fixed at exactly equal distances from the centre of suspension of the beam. Hence two weights which seem to balance each other will never be quite equal in reality. The difference is detected by reversing the weights, and it may be estimated by adding small weights to the deficient side to restore equilibrium, and then taking as the true weight the geometric mean of the two apparent weights of the same object. If the difference is small, the arithmetic mean, that is half the sum, may be substituted for the geometric mean, from which it will not appreciably differ.

This method of reversal is most extensively employed in practical astronomy. The apparent elevation of a heavenly body is observed by a telescope moving upon a divided circle, upon which the inclination of the telescope is read off. Now this reading will be erroneous if the circle and the telescope have not accurately the same centre. But if we read off at the same time both ends of the telescope, the one reading will be about as much too small as the other is too great, and the mean will be nearly free from error. In practice the observation is differently conducted, but the principle is the same; the telescope is fixed to the circle, which moves with it, and the angle through which it moves is read off at three, six, or more points, disposed at equal intervals round the circle. The older astronomers, down even to the time of

« PreviousContinue »