Page images
PDF
EPUB

even attempted the general problem of the simultaneous attractions of four, five, six, or more bodies; they resolve the general problem into so many different problems of three bodies. The principle upon which the calculations of physical astronomy proceed, is to neglect every quantity which does not seem likely to lead to an effect appreciable in observation, and the quantities rejected are far more numerous and complex than the few larger terms which are retained. All then is merely approximate.

Concerning other branches of physical science the same statements are even more evidently true. We speak and calculate about inflexible bars, inextensible lines, heavy points, homogeneous substances, uniform spheres, perfect fluids and gases, and we deduce a great number of beautiful theorems; but all is hypothetical. There is no such thing as an inflexible bar, an inextensible line, nor any one of the other perfect objects of mechanical science; they are to be classed with those mythical existences, the straight line, triangle, circle, &c., about which Euclid so freely reasoned. Take the simplest operation considered in statics-the use of a crowbar in raising a heavy stone, and we shall find, as Thomson and Tait have pointed out, that we neglect far more than we observe. If we suppose the bar to be quite rigid, the fulcrum and stone perfectly hard, and the points of contact real points, we may give the true relation of the forces. But in reality the bar must bend, and the extension and compression of different parts involve us in difficulties. Even if the bar be homogeneous in all its parts, there is no mathematical theory capable of determining with accuracy all that goes on; if, as is infinitely more probable, the bar is not homogeneous, the complete solution will be immensely more complicated, but hardly more hopeless. No sooner had we determined the change of form according to simple mechanical principles, than we should discover the interference of thermodynamic principles. Compression produces heat and extension cold, and thus the conditions of the problem are modified throughout. In attempting a fourth approximation we should have to allow for the conduction of heat from one part of the bar to another. All these effects are

1 Treatise on Natural Philosophy, vol. i. pp. 337, &c.

utterly inappreciable in a practical point of view, if the bar be a good stout one; but in a theoretical point of view they entirely prevent our saying that we have solved a natural problem. The faculties of the human mind, even when aided by the wonderful powers of abbreviation conferred by analytical methods, are utterly unable to cope with the complications of any real problem. And had we exhausted all the known phenomena of a mechanical problem, how can we tell that hidden phenomena, as yet undetected, do not intervene in the commonest actions ? It is plain that no phenomenon comes within the sphere of our senses unless it possesses a momentum capable of irritating the appropriate nerves. There may then be worlds of phenomena too slight to rise within the scope of our consciousness.

All the instruments with which we perform our measurements are faulty. We assume that a plumb-line gives a vertical line; but this is never true in an absolute sense, owing to the attraction of mountains and other inequalities in the surface of the earth. In an accurate trigonometrical survey, the divergencies of the plumb-line must be approximately determined and allowed for. We assume a surface of mercury to be a perfect plane, but even in the breadth of 5 inches there is a calculable divergence from a true plane of about one ten-millionth part of an inch; and this surface further diverges from true horizontality as the plumb-line does from true verticality. That most perfect instrument, the pendulum, is not theoretically perfect, except for infinitely small arcs of vibration, and the delicate experiments performed with the torsion balance. proceed on the assumption that the force of torsion of a wire is proportional to the angle of torsion, which again is only true for infinitely small angles.

Such is the purely approximate character of all our operations that it is not uncommon to find the theoretically worse method giving truer results than the theoretically perfect method. The common pendulum which is not isochronous is better for practical purposes than the cycloidal pendulum, which is isochronous in theory but subject to mechanical difficulties. The spherical form is not the correct form for a speculum or lense, but it differs so slightly from the true form, and is so much more easily

produced mechanically, that it is generally best to rest content with the spherical surface. Even in a six-feet mirror the difference between the parabola and the sphere is only about one ten-thousandth part of an inch, a thickness which would be taken off in a few rubs of the polisher. Watts' ingenious parallel motion was intended to produce rectilinear movement of the piston-rod. In reality the motion was always curvilinear, but for his purposes a certain part of the curve approximated sufficiently to a straight line.

Approximation to Exact Laws.

Though we can not prove numerical laws with perfect accuracy, it would be a great mistake to suppose that there is any inexactness in the laws of nature. We may even discover a law which we believe to represent the action of forces with perfect exactness. The mind may seem to pass in advance of its data, and choose out certain numerical results as absolutely true. We can

never really pass beyond our data, and so far as assumption enters in, so far want of certainty will attach to our conclusions; nevertheless we may sometimes rightly prefer a probable assumption of a precise law to numerical results, which are at the best only approximate. We must accordingly draw a strong distinction between the laws of nature which we believe to be accurately stated in our formulas, and those to which our statements only make an approximation, so that at a future time the law will be differently stated.

=

Mm

D2

[ocr errors]

The law of gravitation is expressed in the form F meaning that gravity is proportional directly to the product of the gravitating masses, and indirectly to the square of their distance. The latent heat of steam is expressed by the equation log F = a + ba' + cẞ, in which are five quantities a, b, c, a, B, to be determined by experiment. There is every reason to believe that in the progress of science the law of gravity will remain entirely unaltered, and the only effect of further inquiry will be to render it a more and more probable expression of the absolute truth. The law of the latent heat of steam on the other hand, will

be modified by every new series of experiments, and it may not improbably be shown that the assumed law can never be made to agree exactly with the results of experiment. Philosophers have not always supposed that the law of gravity was exactly true. Newton, though he had the highest confidence in its truth, admitted that there were motions in the planetary system which he could not reconcile with the law. Euler and Clairaut who were, with D'Alembert, the first to apply the full powers of mathematical analysis to the theory of gravitation as explaining the perturbations of the planets, did not think the law sufficiently established to attribute all discrepancies to the errors of calculation and observation. They did not feel certain that the force of gravity exactly obeyed the well-known rule. The law might involve other powers of the distance. It might be expressed in the form

[blocks in formation]

a b
D2

с

[ocr errors]

and the coefficients a and c might be so small that those terms would become apparent only in very accurate comparisons with fact. Attempts have been made to account for difficulties, by attributing value to such neglected terms. Gauss at one time thought the even more fundamental principle of gravity, that the force is dependent only on mass and distance, might not be exactly true, and he undertook accurate pendulum experiments to test this opinion. Only as repeated doubts have time after time been resolved in favour of the law of Newton, has it been assumed as precisely correct. But this belief does not rest on experiment or observation only. The calculations of physical astronomy, however accurate, could never show that the other terms of the above expression were absolutely devoid of value. It could only be shown that they had such slight value as never to become apparent.

There are, however, other reasons why the law is probably complete and true as commonly stated. Whatever influence spreads from a point, and expands uniformly through space, will doubtless vary inversely in intensity as the square of the distance, because the area over which it is spread increases as the square of the radius. This part of the law of gravity may be considered as due to

the properties of space, and there is a perfect analogy in this respect between gravity and all other emanating forces, as was pointed out by Keill. Thus the undulations of light, heat, and sound, and the attractions of electricity and magnetism obey the very same law so far as we can ascertain. If the molecules of a gas or the particles. of matter constituting odour were to start from a point and spread uniformly, their distances would increase and their density decrease according to the same principle.

Other laws of nature stand in a similar position. Dalton's laws of definite combining proportions never have been, and never can be, exactly proved; but chemists having shown, to a considerable degree of approximation, that the elements combine together as if each element had atoms of an invariable mass, assume that this is exactly true. They go even further. Prout pointed out in 1815 that the equivalent weights of the elements appeared to be simple numbers; and the researches of Dumas, Pelouze, Marignac, Erdmann, Stas, and others have gradually rendered it likely that the atomic weights of hydrogen, carbon, oxygen, nitrogen, chlorine, and silver, are in the ratios of the numbers 1, 12, 16, 14, 35 ̊5, and 108. Chemists then step beyond their data; they throw aside their actual experimental numbers, and assume that the true ratios are not those exactly indicated by any weighings, but the simple ratios of these numbers. They boldly assume that the discrepancies are due to experimental errors, and they are justified by the fact that the more elaborate and skilful the researches on the subject, the more nearly their assumption is verified. Potassium is the only element whose atomic weight has been determined with great care, but which has not shown an approach to a simple ratio with the other elements. This exception may be due to some unsuspected cause of error.2 A similar assumption is made in the law of definite combining volumes of gases, and Brodie has clearly pointed out the line of argument by which the chemist, observing that the discrepancies between the law and fact are within the limits of experimental error, assumes that they are due to error.3

1 An Introduction to Natural Philosophy, 3rd edit. 1733, P, 5.
2 Watts, Dictionary of Chemistry, vol. i. p. 455.
3 Philosophical Transactions, (1866) vol. clvi. p. 809.

« PreviousContinue »