Page images
PDF
EPUB

have flowed through, when the values of the time and of the variable coordinates are known. Thus will be given not only the differential equations which the functions that express the values of the temperatures must satisfy; but the functions themselves will be given under a form which facilitates the numerical applications.

14. In order that these solutions might be general, and have an extent equal to that of the problem, it was requisite that they should accord with the initial state of the temperatures, which is arbitrary. The examination of this condition shews that we may develop in convergent series, or express by definite integrals, functions which are not subject to a constant law, and which represent the ordinates of irregular or discontinuous lines. This property throws a new light on the theory of partial differential equations, and extends the employment of arbitrary functions by submitting them to the ordinary processes of analysis.

15. It still remained to compare the facts with theory. With this view, varied and exact experiments were undertaken, whose results were in conformity with those of analysis, and gave them an authority which one would have been disposed to refuse to them in a new matter which seemed subject to so much uncertainty. These experiments confirm the principle from which we started, and which is adopted by all physicists in spite of the diversity of their hypotheses on the nature of heat.

16. Equilibrium of temperature is effected not only by way of contact, it is established also between bodies separated from each other, which are situated for a long time in the same region. This effect is independent of contact with a medium; we have observed it in spaces wholly void of air. To complete our theory it was necessary to examine the laws which radiant heat follows, on leaving the surface of a body. It results from the observations of many physicists and from our own experiments, that the intensities of the different rays, which escape in all directions from any point in the surface of a heated body, depend on the angles which their directions make with the surface at the same point. We have proved that the intensity of a ray diminishes as the ray

makes a smaller angle with the element of surface, and that it is proportional to the sine of that angle'. This general law of emission of heat which different observations had already indicated, is a necessary consequence of the principle of the equilibrium of temperature and of the laws of propagation of heat in solid bodies.

Such are the chief problems which have been discussed in this work; they are all directed to one object only, that is to establish clearly the mathematical principles of the theory of heat, and to keep up in this way with the progress of the useful arts, and of the study of nature.

17. From what precedes it is evident that a very extensive class of phenomena exists, not produced by mechanical forces, but resulting simply from the presence and accumulation of heat. This part of natural philosophy cannot be connected with dynamical theories, it has principles peculiar to itself, and is founded on a method similar to that of other exact sciences. The solar heat, for example, which penetrates the interior of the globe, distributes itself therein according to a regular law which does not depend on the laws of motion, and cannot be determined by the principles of mechanics. The dilatations which the repulsive force of heat produces, observation of which serves to measure temperatures, are in truth dynamical effects; but it is not these dilatations which we calculate, when we investigate the laws of the propagation of heat.

18. There are other more complex natural effects, which depend at the same time on the influence of heat, and of attractive forces: thus, the variations of temperatures which the movements of the sun occasion in the atmosphere and in the ocean, change continually the density of the different parts of the air and the waters. The effect of the forces which these masses obey is modified at every instant by a new distribution of heat, and it cannot be doubted that this cause produces the regular winds, and the chief currents of the sea; the solar and lunar attractions occasioning in the atmosphere effects but slightly sensible, and not general displacements. It was therefore necessary, in order to

1 Mém. Acad. d. Sc. Tome V. Paris, 1826, pp. 179–213. [A. F.]

submit these grand phenomena to calculation, to discover the mathematical laws of the propagation of heat in the interior of

masses.

19. It will be perceived, on reading this work, that heat attains in bodies a regular disposition independent of the original distribution, which may be regarded as arbitrary.

In whatever manner the heat was at first distributed, the system of temperatures altering more and more, tends to coincide sensibly with a definite state which depends only on the form of the solid. In the ultimate state the temperatures of all the points are lowered in the same time, but preserve amongst each other the same ratios in order to express this property the analytical formulæ contain terms composed of exponentials and of quantities. analogous to trigonometric functions.

Several problems of mechanics present analogous results, such as the isochronism of oscillations, the multiple resonance of sonorous bodies. Common experiments had made these results remarked, and analysis afterwards demonstrated their true cause. As to those results which depend on changes of temperature, they could not have been recognised except by very exact experiments; but mathematical analysis has outrun observation, it has supplemented our senses, and has made us in a manner witnesses of regular and harmonic vibrations in the interior of bodies.

20. These considerations present a singular example of the relations which exist between the abstract science of numbers and natural causes.

When a metal bar is exposed at one end to the constant action. of a source of heat, and every point of it has attained its highest temperature, the system of fixed temperatures corresponds exactly to a table of logarithms; the numbers are the elevations of thermometers placed at the different points, and the logarithms are the distances of these points from the source. In general heat distributes itself in the interior of solids according to a simple law expressed by a partial differential equation common to physical problems of different order. The irradiation of heat has an evident relation to the tables of sines, for the rays which depart from the same point of a heated surface, differ very much from each other,

and their intensity is rigorously proportional to the sine of the angle which the direction of each ray makes with the element of surface.

If we could observe the changes of temperature for every instant at every point of a solid homogeneous mass, we should discover in these series of observations the properties of recurring series, as of sines and logarithms; they would be noticed for example in the diurnal or annual variations of temperature of different points of the earth near its surface.

We should recognise again the same results and all the chief elements of general analysis in the vibrations of elastic media, in the properties of lines or of curved surfaces, in the movements of the stars, and those of light or of fluids. Thus the functions obtained by successive differentiations, which are employed in the development of infinite series and in the solution of numerical equations, correspond also to physical properties. The first of these functions, or the fluxion properly so called, expresses in geometry the inclination of the tangent of a curved line, and in dynamics the velocity of a moving body when the motion varies; in the theory of heat it measures the quantity of heat which flows at each point of a body across a given surface. Mathematical analysis has therefore necessary relations with sensible phenomena; its object is not created by human intelligence; it is a pre-existent element of the universal order, and is not in any way contingent or fortuitous; it is imprinted throughout all nature.

21. Observations more exact and more varied will presently ascertain whether the effects of heat are modified by causes which have not yet been perceived, and the theory will acquire fresh perfection by the continued comparison of its results with the results of experiment; it will explain some important phenomena which we have not yet been able to submit to calculation; it will shew how to determine all the thermometric effects of the solar rays, the fixed or variable temperature which would be observed at different distances from the equator, whether in the interior of the earth or beyond the limits of the atmosphere, whether in the ocean or in different regions of the air. From it will be derived the mathematical knowledge of the great movements which result from the influence of heat combined with that of gravity. The

same principles will serve to measure the conducibilities, proper or relative, of different bodies, and their specific capacities, to distinguish all the causes which modify the emission of heat at the surface of solids, and to perfect thermometric instruments.

The theory of heat will always attract the attention of mathematicians, by the rigorous exactness of its elements and the analytical difficulties peculiar to it, and above all by the extent and usefulness of its applications; for all its consequences concern at the same time general physics, the operations of the arts, domestic uses and civil economy.

SECTION II.

Preliminary definitions and general notions.

22. OF the nature of heat uncertain hypotheses only could be formed, but the knowledge of the mathematical laws to which its effects are subject is independent of all hypothesis; it requires only an attentive examination of the chief facts which common observations have indicated, and which have been confirmed by exact experiments.

It is necessary then to set forth, in the first place, the general results of observation, to give exact definitions of all the elements of the analysis, and to establish the principles upon which this analysis ought to be founded.

The action of heat tends to expand all bodies, solid, liquid or gaseous; this is the property which gives evidence of its presence. Solids and liquids increase in volume, if the quantity of heat which they contain increases; they contract if it diminishes.

When all the parts of a solid homogeneous body, for example those of a mass of metal, are equally heated, and preserve without any change the same quantity of heat, they have also and retain the same density. This state is expressed by saying that throughout the whole extent of the mass the molecules have a common and permanent temperature.

23. The thermometer is a body whose smallest changes of volume can be appreciated; it serves to measure temperatures by

« PreviousContinue »