Composition of two uniform circular motions. This is intimately connected with the explanation of two sets of important phenomena,--the rotation of the plane of polarization of light, by quartz and certain fluids on the one hand, and by transparent bodies under magnetic forces on the other. It is a case of the hypotrochoid, and its corresponding mode of description will be described in a future section. It will also appear in kinetics as the path of a pendulum-bob which contains a gyroscope in rapid rotation. Fourier's 75. Before leaving for a time the subject of the composition of harmonic motions, we must, as promised in $ 62, devote some pages to the consideration of Fourier's Theorem, which is not only one of the most beautiful results of modern analysis, but may be said to furnish an indispensable instrument in the treatment of nearly every recondite question in modern physics. To mention only sonorous vibrations, the propagation of electric signals along a telegraph wire, and the conduction of heat by the earth's crust, as subjects in their generality intractable without it, is to give but a feeble idea of its importance. The following seems to be the most intelligible form in which it can be presented to the general reader : THEOREM.-- A complex harmonic function, with a constant term added, is the proper expression, in mathematical language, for any arbitrary periodic function; and consequently can express any function whatever between definite values of the variable. 76. Any arbitrary periodic function whatever being given, the amplitudes and epochs of the terms of a complex harmonic function which shall be equal to it for every value of the independent variable, may be investigated by the “method of indeterminate coefficients." Assume equation (14) below. Multiply both members first 2ιπξ P Thus instantly Theorem. This investigation is sufficient as a solution of the problem, Fourier's -to find a complex harmonic function expressing a given arbitrary periodic function,-when once we are assured that the problem is possible; and when we have this assurance, it proves that the resolution is determinate; that is to say, that no other complex harmonic function than the one we have found can satisfy the conditions. For description of an integrating machine by which the coefficients Ai, B; in the Fourier expression (14) for any given arbitrary function may be obtained with exceedingly little labour, and with all the accuracy practically needed for the harmonic analysis of tidal and meteorological observations, see Proceedings of the Royal Society, Feb. 1876, or Chap. v. below. 77. The full theory of the expression investigated in $ 76 will be made more intelligible by an investigation from a different point of view. Let F (2) be any periodic function, of period p. That is to (1), where i denotes any positive or negative integer. Consider the F(x) da where a, c, c denote any three given quantities. Its value is doc if z a2 + x2 él (2), as + x2 Fourier's T Hence if A be the greatest of all the values of F'(x), and B the least, F(a) adx A tan- .(4) and >B tan T T (5) 3 (tan T 2 Adding the first members of (3), (4), and (5), and comparing with the corresponding sums of the second members, we find F(x)ado <F(2)( tan as + 20 tan-1 a) }(6) and >F(Z)( tan- tan + tan < But, by (1), 1 (7). a' + (wc + ip)? Now if we denote - 1 by v, 1 1 1 1 Σ 2Σ 2uv lx – av ixp2 – (oc - au) X ), TT (3C + av) cot р 2παυ sin apo P р 2παυ 2пх P αυ (+6+ip? Now let c'=-C, E' -Ě, F(x) = 4(x + $) = $(8), and therefore F (*) = (+), (11) a ( $') р where o denotes any periodic function whatever, of period p. Now let c be a very small fraction of p. In the limit, where c is infinitely small, the greatest and least values of ($') for values of & between & + c and $ - c will be infinitely nearly equal to one another and to $ (F); that is to say, •(3+2) = $($+z)= $(5). Next, let a be an infinitely small fraction of c. In the limit 5)}... (12) Hence the comparison (11) becomes in the limit an equation 2in (E-)) ? 2ιπ (ξ' -ξ) we take its value sin P P and introduce the following notation : COS COS + sin A. 2 2ιπξ P р 2οπξ B; de, р |