Page images



We have been endeavouring to connect the changes of composition with the changes of properties exhibited by certain kinds of matter called elements and compounds. We have divided the elements and their compounds into classes, each of which is more or less distinctly marked off from the others. The compositions of compounds have been represented by formulae which exhibit the number of combining weights of each element combined in one reacting weight of a compound; or, in the language of the only theory of the structure of matter which has been found capable of explaining observed facts, the formulae of compounds exhibit the number of atoms of each element combined in one molecule of a compound. Some of the formulae of compounds also suggest reactions by which these compounds are formed, or reactions which occur between them and other substances; such formulae not only state the compositions of the compounds but also indicate certain of their properties.

Our study of changes of properties and changes of composition has shewn that the connexions between these cannot be wholly perceived or understood so long as we look only to the compositions and properties of the substances forming a chemical system at the beginning of a reaction, and at the compositions and properties of the substances forming the system at the close of the reaction. It became necessary for us to pay some regard to the changing systems during the process of change. By doing this we were led to picture to ourselves many apparently simple chemical occurrences consisting of two or more parts, and to regard the state of equilibrium finally attained by a system of chemically interacting substances as frequently the result of direct and


reverse changes occurring between different members of the system.

The examination of the distribution of the chemically interacting substances in a system free to settle down into equilibrium led us to give a definite meaning to the term affinity as applied to acids and bases. We found it possible to obtain measurements of the relative affinities of various acids and bases, and thus to attach to each acid and base a constant number which conveys much quantitatively accurate information regarding the amounts of various chemical changes in which the acids and bases play important parts. We were able to see that there are definite connexions between the compositions of acids and bases and the values of the affinityconstants of these compounds. The accurate development of this connexion is in the future.

Although we have endeavoured to separate the chemical from the physical parts of the events we have studied, we have found the two classes of phenomena sometimes so inextricably interwoven that it was impossible wholly to ignore the physical aspects of certain chemical occurrences. Chemical changes, we found, are accompanied by changes of energy, and, as the net result, part of the energy of the initial system is always degraded when the system has attained to chemical equilibrium.

That we might form clear mental pictures of the mechanism of chemical changes, we found it almost necessary to adopt the conceptions and the language of the molecular and atomic theory. This theory put before us two definite portions of each kind of matter, the atom and the molecule; it enabled us to form well-defined conceptions of each of these extremely minute masses. Of the two conceptions, we found the atom the more definite; we were obliged to confine ourselves to gases when attempting to reason accurately concerning molecules, and even then we found it necessary to allow some latitude to our notion of the molecule, such latitude as is implied in the physical definition of the gaseous molecule as “that minute portion of a gas which moves about as a whole, so that its parts, if it has any, do not part company during the motion of agitation of the gas.

As the molecular theory has been developed from the study of gaseous phenomena, and is as yet strictly applicable only to gases, we found it advisable to speak of chemical changes occurring between solid or liquid substances as being interactions between reacting weights,-meaning thereby aggregates or collocations of atoms—rather than between molecules, of the bodies taking part in the changes.

The study of the interactions of gases led to the conception of the gaseous molecule as a structure built up of definite numbers of atoms arranged in a definite manner; chemical facts obliged us to connect the properties of gaseous molecules not only with the nature, and the number, but also with the arrangement, of their parts. It was sometimes necessary to count two or more atoms in a molecule as a single atom, so far as certain chemical changes were concerned; we thus gained the conception of the compound radicle.

As a guide in our attempts to learn something about the arrangement of the parts of molecules, we made use of the hypothesis of atomic valency, which asserts that each atom forming part of a gaseous molecule is capable of directly interacting with a limited number of other atoms. We agreed to measure the maximum number of atoms between which and any specified atom there could be direct intramolecular action by the maximum number of atoms of hydrogen, fluorine, chlorine, bromine, or iodine, with which the specified atom combines to form a gaseous molecule. The more

our study of chemistry advanced the more importance were we led to attach to those constants, the atomic weights of the elements, until at last we arrived at a system of chemical classification, based on the atomic weights of the elements, which as it is developed seems to include in itself all other classificatory schemes.

Chemistry is the daughter of alchemy. The object of both has always been to find the changeless foundation of changing phenomena.

Alchemists dreamt of the philosopher's stone, and worked hard to find it. Chemists have found the elements, and beneath the elements they have found the atoms, and beneath the atoms they sometimes think they perceive the atoms of the one element, of which all the known elements and compounds, it may be, are developed forms.


The numbers refer to paragraphs.

Elements and compounds are referred to in groups. For instance, the heading Strontium
and its compounds refers the reader to Calcium group. Again, Ammonia will be found
under the heading Nitrogen group, hydrides of. Similarly Sulphuretted hydrogen must be
looked for under Sulphur group, hydrides of ; Hydrochloric acid under Chlorine group,
hydrides of:

[ocr errors]


[ocr errors]
[ocr errors]
[ocr errors]

Abnormal vapour densities, 336–337
Acetic acid, structural formula of, 370
Acidic and basic oxides, 124–126, 130-132,

134, 135, 193, 1994

201, 205

nomenclature of, 144
Acidic hydrogen, use of expression, 331
Acids, affinities of, 251, 252-256, 330
Acids and corresponding oxides, 178, 215, 225

and salts, 134-141, 187–193
Acids, basicity of, 187–189, 329

composition of, 190-192
neutralisation of, 136
nomenclature of, 145, 216
relations of, to salts, 136, 138
relative affinities of, 252, 336

Alkali metals, general chemical properties

of, 163, 436
haloid compounds of, 166
hydroxides of, 165
interactions of, with acids, 168

water, 163,

occurrence of, 161

oxides of, 161
Alkaline oxides, 125
Alkalis, 134, 165

interactions of, with halogens, 158
Allotropy, 137, 219–222, 323–325
Aluminium and its compounds, s. Alu-

minium Group.
Alums, 417, 436, 443
Ammonium, 210, 211, 371
Antimony and its compounds, s. Nitrogen

Group, and Nitrogen-Phosphorus Group.
Aluminium group of elements (Al, Ga, In,

TI), 460–466
general properties of,

460, 461
general relations of, 466
haloid compounds of,

hydroxides and oxides

of, 462
salts of, 465

[ocr errors]
[ocr errors]

strong and weak, 256
Affinities, relative, of acids and bases, 251,

Affinity, chemical, 242 et seq.

applications of, 249–255
Affinity-constants, 255
Air, chemical study of, 107–114
, composition of, 113, 114

is a mixture, 111, 112
Alchemical experiments on transmutation

of matter, 16
Alchemy contrasted with chemistry, 16, 17
Alcohol, structural formula of, 362
Alcohols, primary, 367
Alkali metals, (Li, Na, K, Rb, Cs), 160—169
contrasted with halogens 161

and sulphur


sulphides of, 464
Arsenic and its compounds, s. Nitrogen

Group, and Nitrogen-Phosphorus Group.
Atom, Avogadrean conception of, 283

Daltonian conception of, 275

group, 181

Boron group of elements, general relations

of, 459
haloid compounds of,

hydroxides and oxides

of, 455
oxyacids of, 455
salts of, 458
sulphides of, 456

[ocr errors]
[ocr errors]
[ocr errors]
[ocr errors]


Cadmium and its compounds, s. Magnesium

Caesium and its compounds, s. Alkali metals.
Calcium and its compounds, s. Calcium

Calcium group, (Be, Ca, Sr, Ba), 396–402

general properties of, 396,

haloid compounds of, 400
hydroxides and oxides of, 398
salts of, 401

sulphides of, 399
Carbon and its compounds, s. Carbon Group
Carbon group of elements (C, Ti, Zr, Ce, Th)

467 - 473
general properties of,

467, 468
general relations of,

haloid compounds of,

oxides and oxyacids

of, 469
salts of, 472
sulphides and sulpho-

acids of, 470
Cerium and its compounds, s. Carbon Group.
Chemical affinity, 242 et seq.

Berthollet's view of, 246
Guldberg and Waage's

view of, 247

older views regarding, 244
Chemical change, conditions modifying, 227

[ocr errors]
[ocr errors]

et seq.


contrasted with physical,

general nature of, 47
influence of physical states

of interacting bodies on,

influence of relative

Atom, valency of an, defined, 356, 360
Atomic and molecular theory, 283-311
Atomic and molecular theory, applications

of, 312 et seq. (s. also Molecular and atomic

Atomic heat, meaning of expression, 302
Atomic syntheses, Dalton's rules regarding,

Atomic theory, 272 et seq.

of Dalton, 275-282

of Lucretius, 272
Atomic valency, hypothesis of, 359, 374, 375

illustrations of use of, 362-365
Atomic weight of an element defined, 295
Atomic weights of chlorine and oxygen de-

termined, 297, 298
elements determined, 300

by Avogadro's law,

by chemical me-

thods, 308
by law of Dulong

and Petit, 302–

by niethod of iso-

morphism, 306
Atomic weights, table of, 500
Atomicities of elementary molecules, 316, 317
Atoms, Dalton's symbols for, 278

equivalency of, 351–355, 372
linkage of, 354

monovalent, defined, 351
Aurate of potassium, 439
Avogadro's law, 284-286, 291





Barium and its compounds, s. Calcium

Base, meaning of term, 140
Bases, affinities of, 251, 252
Basic and acidic oxides, 124–126, 130–132,

134, 135, 193, 199---201, 205
Basicity of acids, 187—193, 329
Beryllium and its compounds, s. Calcium

Berthollet's view of chemical affinity, 246
Bismuth and its compounds, s. Nitrogen

Group, and Nitrogen-Phosphorus Group.
Bonds, double and treble, 373
Bromine and its compounds, s. Chlorine

Bromo-auric acid, 441
Boric acid, 455
Boron and its compounds, s. Boron Group.
Boron group of elements (B, Sc, Y, La, Yb),

general properties of,
453, 454

masses of interacting

bodies on, 238-240
influence of temperature

on, 231-236
influence of temperature

and pressure on, 235,

« PreviousContinue »