Page images
PDF
EPUB
[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small]

References to Table of Atomic Weights. 1 Li. J. W. Mallet, Sill. Amer. Journal (2) 32. 349. STAs, Nouvelles Recherches, pp. 268 and 274.

? Be. NILSON and PETTERSSON, Ber. 13. 1451.

3 B. BERZELIUS, Pogg. Ann. 2. 129. DEVILLE, Ann. Chim. Phys. (3) 55. 18o.

4 C. DUMAS and STAs, Ann. Chim. Phys. (3) 1. 5. ERDMANN and MARCHAND, 7. für pract. Chemie, 23. 159. Roscoe, Compt. rend. 94. 1180.

5 N. Stas, Rapports, pp. 50, 87, 92 ; and Nouvelles Recherches, pp. 57, 281.

60. ERDMANN and MARCHAND, 7. für pract. Chemie, 26. 468. DUMAS, Ann. Chim. Phys. (3) 8. 189.

7 F. Louyet, Ann. Chim. Phys. (3) 25. 291. DUMAS, do. (3) 55. 170. DE LUCA, Compt. rend. 51. 299.

8 Na. Pelouze, Compt. rend. 20. 1050. DUMAS, Ann. Chim. Phys. (3) 50. 182. Stas, Rapports, p. 78; and Nouvelles Recherches, p. 248.

9 Mg. JACQUELAIN, Ann. Chim. Phys. (3) 32. 202. BAHR, I. für pract. Chemie, 56. 310. Dumas, Ann. Chim. Phys. (3) 55. 187. MARIGNAC, Archiv. Scien. Phys. nat. (3) 10. 5, 193.

10 Al. J. W. MALLET, Phil. Trans. for 1880. 1003 et seq.

11 Si. PELOUZE, Compt. rend. 20. 1032. DUMAS, Ann. Chim. Phys. (3) 65. 183. J. SCHIEL, Annalen, 120.

94. 12 P. PELOUZE, Compt. rend. 20. 1053. SCHRÖTTER, Ann. Chim. Phys. (3) 38. 131. DUMAS, Ann. Chim. Phys. (3) 55. 172.

13 S. STAS, Rapports, p. 53.

14 Cl. Stas, Rapports, pp. 38, 42, 44, 118; and Nouvelles Recherches, p. 208. 15 K. Stas, Rapports, pp. 69, 91, u8; and Nouvelles Recherches, p. 244.

16 Ca. BERZELIUS, Pogg. Ann. 8. 189. DUMAS, Ann. Chim. Phys. (3) 65. 190. ERDMANN and MARCHAND, Annalen, 44. 216:52. 210: 76. 219. SALVÉTAL, Compt. rend. 17. 318.

17 Sc. Nilson, Ber. 13. 1439.

18 Ti. H. Rose, Pogg. Ann. 15. 145. J. PIERRE, Ann. Chim. Phys. (3) 20. 257. THORPE, Ber. 16. 3014.

19 V. Roscoe, Phil. Trans. for 1868. 8, 23.

20 Cr. E. PELIGOT, Ann. Chim. Phys. (3) 12. 528. BERLIN, Annalen, 56. 207: 60. 108 et seq. F. KESSLER, Pogg. Ann. 95. 211. SIEWERT, Zeitschrift für die gesammten Naturwissenschaften, 17. 530.

21 M1. DUMAS, Ann. Chim. Phys. (3) 55. 150. SCHNEIDER, Pogg. Ann. 107. 605. Do, Annalen, 113. 78. DEWAR and Scott, Proc. R. S. 35. 44. MARIGNAC, Archiv. Scien. Phys. nat. (3) 10. 5, 193.

22 Fe. BERZELIUS, Annalen, 50. 432. ERDMANN and MARCHAND, Annalen, 52. 212. L. E. Rivot, Annalen, 78. 214. DUMAS, Ann. Chim. Phys. (3) 55. 157.

23 Ni. DUMAS, Ann. Chim. Phys. (3) 55. 149. RUSSELI, C. S. Journal (2) 1. 51: 7. 294. SOMARUGA, Fresenius's Zeitschr. 6. 347. R. H. LEE, Ber. 4.789 BAUBIGNY, Compt. rend. 97. 951.

24 Co. WESELSKY, Ber. 2. 592. R. H. LEE, Ber. 4. 789. Russell, loc. cit.

25 Cu. BERZELIUS, Pogg. Ann. 8. 182. ERDMANN and MARCHAND, 7. für pract. Chemie, 31. 395. W. HAMPE, Fresenius's Zeitschr. 13. 352. BAUBIGNY, Compt. rend. 97. 906.

26 Zn. GAY-I SAC and THENARD, Gilbert's Annalen, 37. 460. BERZELIUS, Pogg. Ann.8. 184. ERDMANN, Berzelias's Lehrbuch, (5th ed.)3. 1219. P. A. Favre, Ann. Chim. Phys. (3) 10. 163. MARIGNAC, Archiv. Scien. Phys. nat. (3) 10.5, 193.

27 Ga. LECOQ DE BOISBAUDRAN, Compt. rend. 86. 941.

28 As. W. WALLACE, Phil. Mag. (4) 18. 279. DUMAS, Ann. Chim. Phys. (3) 56. 174. F. KESSLER, Pogg. Ann. 95. 204.

29 Se. PETTERSSON and EKMAN, Ber. 9. 1210.
30 Br. Stas, Nouvelles Recherches, pp. 158, 170 and 199.

31 Rb. BUNSEN, Porg. Ann. 113. 339. PICCARD, 7. für pract. Chemie, 86. 453. GODEFFROY, Annalen, 181. 189.

39 Sr. MARIGNAC, Annalen, 106. 168. DUMAS, Ann. Chim. Phys. (3) 55. 191. 33 Yt. Cleve, Ber. 6. 1467. RAMMELSBERG, Ber. 9. 1580.

34 Zr. HERMANN, 7. für pract. Chemie, 31. 77. MariGNAC, Ann. Chim. Phys. (3) 60. 257.

31 Nb. MARIGNAC, Fresenius's Zeitschr, 5. 480.
36 Mo. P. LIECHTI and B. KEMPE, Annalen, 169. 344.
37 Rh. BERZELIUS, Posg. Ann. 13. 437.

Rh. JÖRGENSEN, 7. für pract. Chemie (2) 27. 433.
38 Ru. CLAUS, Pogg. Ann. 65. 218.
39 Pd. BERZELIUS, Pogg. Ann. 13. 442.

40 Ag. Stas, Rapports, pp. 38, 42, 44; and Nouvelles Rocherches, pp. 109, 158, 171, 189, 193, 208.

41 Cd. 0. W. HUNTINGTON, Proc. Amer. Acad. of Arts and Sci. 17. 28 (Chem. News, 44. 268].

37 A

51 Di.

42 In. C. WINKLER, 7. für pract. Chemie, 94. 8: 102. 282. BUNSEN, Pogg. Ann. 141. 28.

43 Sn. DUMAS, Ann. Chim. Phys. (3) 56. 154.

44 Sb. R. SCHNEIDER, Über das Atomgewicht des Antimons (Berlin), 1880. J. P. COOKE, Proc. Amer. Acad. of Arts and Sci. 13. I: 17. 13. J. BONGARTZ, Bor. 16. 1942.

45 1. Stas, Nouvelles Recherches, pp. 135, 152, 189, 193. 46 Tel W. L. Wills, C. S. Journal Trans. for 1879. 704.

47 Cs. BUNSEN. Pogg. Ann. 119. 1. JOHNSON and ALLEN, Sill. Amer. Fournal, (2) 35. 94. R. GODEFFROY, Annaler, 181. 185.

43 Ba. MARIGNAC, Annalen, 68. 215. DUMAS, Ann. Chim. Phys. (3) 55. 137.

49 La. MARIGNAC, Ann. Chim. Phys. (4) 30. 67. Cleve, Bull. Soc. Chim. 60. 212 : (2) 39. 151. BRAUNER, C. S. Journal Trans. for 1882. 75.

50 Ce. MARIGNAC, Annalen 68. 212. H. BUHRIG, 7. für pract. Chemie (2) 12. 222.

B. BRAUNER, C. S. Journal Trans. for 1882. 68. 51 a Di. P. T. CLEVE, Bull. Soc. Chim. (2) 39. 289. 52 Er. P. T. Cleve, Compt. rend. 91. 381. Nilson, Ber. 13. 1459. 53 Yb. NILSON, Ber. 12. 550 : 13. 1430. 54 Ta. MARIGNAC, Annalen, Supplbd. 4. 351. 55 W. RoscoE, Chem. News, 25. 61, 73. 56 Ir. K. SEUBERT, Ber. 11. 1767. 57 Os. DEVILLE and DEBRAY, Ann. Chim. Phys. (3) 56. 403. 68 Pt. K. SEUBERT, Ber. 14. 865. [Annalen, 207. 29.]

BERZELIUS, Lehrbuch, (5th ed.) 3. 1212. JAVAL, Ann. Chim. Phys. 17. 337. LEVOL, Ann. Chim. Phys. (3) 30. 355.

60 Hg. ERDMANN and MARCHAND, 7. für pract. Chemie, 31. 392. SVANBERG, 7. für pract. Chemie, 45. 468. MILLON, Ann. Chim. Phys. (3) 18. 345.

61 Ti. W. CROOKES, Phil. Trans. for 1873. 277. 6° Pb. STAS, Rapports, pp. 101 and 106.

63 Bi. SCHNEIDER, Pogg. Ann. 82. 303. DUMAS, Ann. Chim. Phys. (3) 55. 176. MARIGNAC, Archiv. Scien. Phys. nat. (3) 10. 5, 193. Löwe, Zeitschr. anal. Chemie, 22. 498.

64 Th. NILSON, Ber. 15. 2527.
65 U. PELIGOT, Ann. Chim. Phys. (3) 20. 329.

59 Au.

Note. The full titles of Stas's treatises which are referred to in this table are: (1) Recherches sur les rapports reciproques des poids atomiques, par 7. S. Stas, Bruxelles, 1860. (2) Nouvelles recherches sur les lois des proportions chimiques, sur les poids atomiques et leur rapports mutuels, par 7. S. Stas, Bruxelles, 1865. A translation into German of both treatises was published in 1867 under the title Untersuchungen über die Gesetze der Chemischen Proportionen, über die Atomgewichte und ihre gegenseitigen Verhältnisse.

BRAUNER (see abstract in Ber. 16. 3055) has recently obtained values for the atomic weight of Tellurium varying from 124'94 to 125-4 (mean = 125); he has shewn that the process employed by Wills gives values which are too high, unless great precautions are taken.

=

CHAPTER II.

ATOMIC AND MOLECULAR SYSTEMS.

SECTION I. Nascent Actions.

39. BRODIE applied his hypothesis regarding the structure of elementary molecules (see ante, p. 71, par. 36) to explain a number of phenomena generally grouped together under the name nascent actions. That explanation, somewhat simplified and also developed by subsequent research, is usually regarded as the most satisfactory that can be given in the present state of knowledge.

When hydrogen is passed into water containing silver chloride in suspension no chemical change occurs; when hydrogen is generated in the vessel which contains the silver chloride decomposition of this salt proceeds rapidly with production of silver and hydrochloric acid. Nitrobenzene is converted into aniline by the action of hydrogen produced in contact with it, but not by hydrogen produced in another vessel and conducted into that containing the nitrobenzene. Carbon, hydrogen, and nitrogen do not combine directly; but if electric sparks are passed through a mixture of benzene vapour and nitrogen, hydrocyanic acid is produced. Sulphur dioxide and water when heated with oxygen are only very partially changed into sulphuric acid; but if the oxygen is produced in contact with the moist dioxide (e.g. by decomposition of nitrogen trioxide) the change into sulphuric acid is

rapidly completed. Sulphur is not oxidised to sulphuric acid by bromine in presence of water; but if the sulphur is produced from a compound in presence of bromine water, it is then oxidised (e.g. sulphuretted hydrogen passed into bromine water gives hydrobronic acid and sulphur, and also sulphuric acid). Metallic chlorides (e.g. aluminium chloride) produced by the action of metal on chlorine only at very high temperatures, and in small quantities for a given time of action, are sometimes much more easily prepared by the action of chlorine on a mixture of the metallic oxide and carbon. The general action of metals on dilute cold sulphuric acid is to produce a sulphate and evolve hydrogen, but on nitric acid to produce a nitrate and evolve oxides of nitrogen, nitrogen and ammonia; many metals when heated with concentrated sulphuric acid evolve sulphur dioxide, either alone, or in some cases mixed with hydrogen and sulphuretted hydrogen.

40. These phenomena, and many others of the same class, find an explanation in terms of the, molecular theory, that explanation being based on the distinction, already insisted on, between molecules and atoms. Any mass of a gaseous element under ordinary conditions is built up of molecules, but if we assume that when a compound molecule undergoes decomposition a short but appreciable time elapses before the greater number of the elementary atoms which composed it have rearranged themselves to form new molecules, we have the materials for a fairly satisfactory explanation of the phenomena of nascent action. This explanation does not necessitate, as some of its French opponents say it does, the assumption of strange and inexplicable properties as belonging to the elementary atoms. Indeed the existence of what is known as the 'nascent state' seems to follow as a necessary deduction from the molecular theory applied to chemical phenomena. When a chemical change occụrs between two molecules, the first step in that change must in most cases consist in a breaking up of the molecular structures, and the second, in a rearrangement of the parts of the molecules, i.e. of the atoms, to form a configuration stable

a

« PreviousContinue »