Page images
PDF
EPUB

Monge; the other-to solve problems on figures in space by constructions in a plane - had received considerable attention before his time. His most noteworthy predecessor in descriptive geometry was the Frenchman Frézier (16821773). But it remained for Monge to create descriptive geometry as a distinct branch of science by imparting to it geometric generality and elegance. All problems previously treated in a special and uncertain manner were referred back to a few general principles. He introduced the line of intersection of the horizontal and the vertical plane as the axis of projection. By revolving one plane into the other around this axis or ground-line, many advantages were gained.

54

Gaspard Monge (1746-1818) was born at Beaune. The construction of a plan of his native town brought the boy under the notice of a colonel of engineers, who procured for him an appointment in the college of engineers at Mézières. Being of low birth, he could not receive a commission in the army, but he was permitted to enter the annex of the school, where surveying and drawing were taught. Observing that all the operations connected with the construction of plans of fortification were conducted by long arithmetical processes, he substituted a geometrical method, which the commandant at first refused even to look at, so short was the time in which it could be practised; when once examined, it was received with avidity. Monge developed these methods further and thus created his descriptive geometry. Owing to the rivalry between the French military schools of that time, he was not permitted to divulge his new methods to any one outside of this institution. In 1768 he was made professor of mathematics at Mézières. In 1780, when conversing with two of his pupils, S. F. Lacroix and Gay vernon in Paris, he was obliged to say, "All that I have here done by calculation, I could have

done with the ruler and compass, but I am not allowed to reveal these secrets to you." But Lacroix set himself to examine what the secret could be, discovered the processes, and published them in 1795. The method was published by Monge himself in the same year, first in the form in which the shorthand writers took down his lessons given at the Normal School, where he had been elected professor, and then again, in revised form, in the Journal des écoles normales. The next edition occurred in 1798-1799. After an ephemeral existence of only four months the Normal School was closed in 1795. In the same year the Polytechnic School was opened, in the establishing of which Monge took active part. He taught there descriptive geometry until his departure from France to accompany Napoleon on the Egyptian campaign. He was the first president of the Institute of Egypt. Monge was a zealous partisan of Napoleon and was, for that reason, deprived of all his honours by Louis XVIII. This and the destruction of the Polytechnic School preyed heavily upon his mind. He did not long survive this insult.

Monge's numerous papers were by no means confined to descriptive geometry. His analytical discoveries are hardly less remarkable. He introduced into analytic geometry the methodic use of the equation of a line. He made important contributions to surfaces of the second degree (previously studied by Wren and Euler) and discovered between the theory of surfaces and the integration of partial differential equations, a hidden relation which threw new light upon both subjects. He gave the differential of curves of curvature, established a general theory of curvature, and applied it to the ellipsoid. He found that the validity of solutions was not impaired when imaginaries are involved among subsidiary quantities. Monge published the following books: Statics, 1786; Applications de l'algèbre à la géométrie, 1805; Applica

tion de l'analyse à la géométrie. The last two contain most of his miscellaneous papers.

Monge was an inspiring teacher, and he gathered around him a large circle of pupils, among which were Dupin, Servois, Brianchion, Hachette, Biot, and Poncelet.

Charles Dupin (1784-1873), for many years professor of mechanics in the Conservatoire des Arts et Métiers in Paris, published in 1813 an important work on Développements de géométrie, in which is introduced the conception of conjugate tangents of a point of a surface, and of the indicatrix. It contains also the theorem known as "Dupin's theorem." Surfaces of the second degree and descriptive geometry were successfully studied by Jean Nicolas Pierre Hachette (1769– 1834), who became professor of descriptive geometry at the Polytechnic School after the departure of Monge for Rome and Egypt. In 1822 he published his Traité de géométrie descriptive.

Descriptive geometry, which arose, as we have seen, in technical schools in France, was transferred to Germany at the foundation of technical schools there. G. Schreiber, professor in Karlsruhe, was the first to spread Monge's geometry in Germany by the publication of a work thereon. in 1828-1829.54 In the United States descriptive geometry was introduced in 1816 at the Military Academy in West Point by Claude Crozet, once a pupil at the Polytechnic School in Paris. Crozet wrote the first English work on the subject.2

Lazare Nicholas Marguerite Carnot (1753-1823) was born at Nolay in Burgundy, and educated in his native province. He entered the army, but continued his mathematical studies, and wrote in 1784 a work on machines, containing the earliest proof that kinetic energy is lost in collisions of bodies. With the advent of the Revolution he threw himself into politics, and when coalesced Europe, in 1793, launched against France a million soldiers, the gigantic task of organising fourteen

armies to meet the enemy was achieved by him. He was banished in 1796 for opposing Napoleon's coup d'état. The refugee went to Geneva, where he issued, in 1797, a work still frequently quoted, entitled, Réflexions sur la Métaphysique du Calcul Infinitésimal. He declared himself as an "irreconcilable enemy of kings." After the Russian campaign he offered to fight for France, though not for the empire. On the restoration he was exiled. He died in Magdeburg. His Géométrie de position, 1803, and his Essay on Transversals, 1806, are important contributions to modern geometry. While Monge revelled mainly in three-dimensional geometry, Carnot confined himself to that of two. By his effort to explain the meaning of the negative sign in geometry he established a "geometry of position," which, however, is different from the "Geometrie der Lage" of to-day. He invented a class of general theorems on projective properties of figures, which have since been pushed to great extent by Poncelet, Chasles, and others.

Jean Victor Poncelet (1788-1867), a native of Metz, took part in the Russian campaign, was abandoned as dead on the bloody field of Krasnoi, and taken prisoner to Saratoff. Deprived there of all books, and reduced to the remembrance of what he had learned at the Lyceum at Metz and the Polytechnic School, where he had studied with predilection the works of Monge, Carnot, and Brianchion, he began to study mathematics from its elements. He entered upon original researches which afterwards made him illustrious. While in prison he did for mathematics what Bunyan did for literature, produced a much-read work, which has remained of great value down to the present time. He returned to France in 1814, and in 1822 published the work in question, entitled, Traité des Propriétés projectives des figures. In it he investigated the properties of figures which remain un

altered by projection of the figures. The projection is not effected here by parallel rays of prescribed direction, as with Monge, but by central projection. Thus perspective projection, used before him by Desargues, Pascal, Newton, and Lambert, was elevated by him into a fruitful geometric method. In the same way he elaborated some ideas of De Lahire, Servois, and Gergonne into a regular method - the method of "reciprocal polars." To him we owe the Law of Duality as a consequence of reciprocal polars. As an independent principle it is due to Gergonne. Poncelet wrote much on applied mechanics. In 1838 the Faculty of Sciences was enlarged by his election to the chair of mechanics.

While in France the school of Monge was creating modern geometry, efforts were made in England to revive Greek geometry by Robert Simson (1687-1768) and Matthew Stewart (1717-1785). Stewart was a pupil of Simson and Maclaurin, and succeeded the latter in the chair at Edinburgh. During the eighteenth century he and Maclaurin were the only prominent mathematicians in Great Britain. His genius was illdirected by the fashion then prevalent in England to ignore higher analysis. In his Four Tracts, Physical and Mathematical, 1761, he applied geometry to the solution of difficult astronomical problems, which on the Continent were approached analytically with greater success. He published, in 1746, General Theorems, and in 1763, his Propositiones geometricæ more veterum demonstratæ. The former work contains sixty-nine theorems, of which only five are accompanied by demonstrations. It gives many interesting new results on the circle and the straight line. Stewart extended some theorems on transversals due to Giovanni Ceva (1648-1737), an Italian, who published in 1678 at Mediolani a work containing the theorem now known by his name.

« PreviousContinue »