Page images
PDF
EPUB

sible. He thus showed by actual proof that which keenminded mathematicians had long suspected; namely, that the great army of circle-squarers have, for two thousand years, been assaulting a fortification which is as indestructible as the firmament of heaven.

Another reason for the desirability of historical study is the value of historical knowledge to the teacher of mathematics. The interest which pupils take in their studies may be greatly increased if the solution of problems and the cold logic of geometrical demonstrations are interspersed with historical remarks and anecdotes. A class in arithmetic will be pleased to hear about the Hindoos and their invention of the "Arabic notation"; they will marvel at the thousands of years which elapsed before people had even thought of introducing into the numeral notation that Columbus-eggthe zero; they will find it astounding that it should have taken so long to invent a notation which they themselves can now learn in a month. After the pupils have learned how to bisect a given angle, surprise them by telling of the many futile attempts which have been made to solve, by elementary geometry, the apparently very simple problem of the trisection of an angle. When they know how to construct a square whose area is double the area of a given square, tell them about the duplication of the cube-how the wrath of Apollo could be appeased only by the construction of a cubical altar double the given altar, and how mathematicians long wrestled with this problem. After the class have exhausted their energies on the theorem of the right triangle, tell them something about its discoverer-how Pythagoras, jubilant over his great accomplishment, sacrificed a hecatomb to the Muses who inspired him. When the value of mathematical training is called in question, quote the inscription over the entrance into the academy of Plato, the philosopher: "Let no one who is

unacquainted with geometry enter here." Students in analytical geometry should know something of Descartes, and, after taking up the differential and integral calculus, they should become familiar with the parts that Newton, Leibniz, and Lagrange played in creating that science. In his historical talk it is possible for the teacher to make it plain to the student that mathematics is not a dead science, but a living one in which steady progress is made."

The history of mathematics is important also as a valuable contribution to the history of civilisation. Human progress is closely identified with scientific thought. Mathematical and physical researches are a reliable record of intellectual progress. The history of mathematics is one of the large windows through which the philosophic eye looks into past ages and traces the line of intellectual development.

ANTIQUITY.

THE BABYLONIANS.

THE fertile valley of the Euphrates and Tigris was one of the primeval seats of human society. Authentic history of the peoples inhabiting this region begins only with the foundation, in Chaldæa and Babylonia, of a united kingdom out of the previously disunited tribes. Much light has been thrown on their history by the discovery of the art of reading the cuneiform or wedge-shaped system of writing.

In the study of Babylonian mathematics we begin with the notation of numbers. A vertical wedge stood for 1, while the characters and signified 10 and 100 respectively. Grotefend believes the character for 10 originally to have been the picture of two hands, as held in prayer, the palms being pressed together, the fingers close to each other, but the thumbs thrust out. In the Babylonian notation two principles were employed - the additive and multiplicative. Numbers below 100 were expressed by symbols whose respective values had to be added. Thus, stood for 2, y for 3, for 4, ▾ for 23, <<< for 30. Here the symbols of higher order appear always to the left of those of lower order. In writing the hundreds, on the other hand, a smaller symbol was placed to the left of the 100, and was, in that case, to be multiplied by 100. Thus,

signified

10 times 100, or 1000. But this symbol for 1000 was itself taken for a new unit, which could take smaller coefficients to its left. Thus, << denoted, not 20 times 100, but 10 times 1000. Of the largest numbers written in cuneiform symbols, which have hitherto been found, none go as high as a million.3

If, as is believed by most specialists, the early Sumerians were the inventors of the cuneiform writing, then they were, in all probability, also familiar with the notation of numbers. Most surprising, in this connection, is the fact that Sumerian inscriptions disclose the use, not only of the above decimal system, but also of a sexagesimal one. The latter was used chiefly in constructing tables for weights and measures. It is full of historical interest. Its consequential development, both for integers and fractions, reveals a high degree of mathematical insight. We possess two Babylonian tablets which exhibit its use. One of them, probably written between 2300 and 1600 B.C., contains a table of square numbers up to 602. The numbers 1, 4, 9, 16, 25, 36, 49, are given as the squares of the first seven integers respectively. We have next 1.482, 1.2192, 1.40 103, 2.1 112, etc. This remains unintelligible, unless we assume the sexagesimal scale, which makes 1.460 + 4, 1.21 = 60 +21, 2.1 = 2.60 +1. The second tablet records the magnitude of the illuminated portion of the moon's disc for every day from new to full moon, the whole disc being assumed to consist of 240 parts. The illuminated parts during the first five days are the series 5, 10, 20, 40, 1.20 (80), which is a geometrical progression. From here on the series becomes an arithmetical progression, the numbers from the fifth to the fifteenth day being respectively 1.20, 1.36, 1.52, 2.8, 2.24, 2.40, 2.56, 3.12, 3.28, 3.44, 4. This table not only exhibits the use of the sexagesimal system, but also indicates the acquaintance of the Babylonians with progressions.

=

=

Not to be overlooked is the fact that in the sexagesimal notation of integers the "principle of position" was employed. Thus, in 1.4 (= 64), the 1 is made to stand for 60, the unit of the second order, by virtue of its position with respect to the 4. The introduction of this principle at so early a date is the more remarkable, because in the decimal notation it was not introduced till about the fifth or sixth century after Christ. The principle of position, in its general and systematic application, requires a symbol for zero. We ask, Did the Babylonians possess one? Had they already taken the gigantic step of representing by a symbol the absence of units? Neither of the above tables answers this question, for they happen to contain no number in which there was occasion to use a zero. The sexagesimal system was used also in fractions. Thus, in the Babylonian inscriptions, and are designated by 30 and 20, the reader being expected, in his mind, to supply the word "sixtieths." The Greek geometer Hypsicles and the Alexandrian astronomer Ptolemæus borrowed the sexagesimal notation of fractions from the Babylonians and introduced it into Greece. From that time. sexagesimal fractions held almost full sway in astronomical and mathematical calculations until the sixteenth century, when they finally yielded their place to the decimal fractions. It may be asked, What led to the invention of the sexagesimal system? Why was it that 60 parts were selected? To this we have no positive answer. Ten was chosen, in the decimal system, because it represents the number of fingers. But nothing of the human body could have suggested 60. Cantor offers the following theory: At first the Babylonians reckoned the year at 360 days. This led to the division of the circle into 360 degrees, each degree representing the daily amount of the supposed yearly revolution of the sun around the earth. Now they were, very probably, familiar with the

« PreviousContinue »