Page images
PDF
EPUB

exist. All these solids became the subjects of investigation by the Platonic school. One result of these inquiries was epoch-making. Menæchmus, an associate of Plato and pupil of Eudoxus, invented the conic sections, which, in course of only a century, raised geometry to the loftiest height which it was destined to reach during antiquity. Menæchmus cut three kinds of cones, the 'right-angled,' 'acute-angled,' and obtuse-angled,' by planes at right angles to a side of the cones, and thus obtained the three sections which we now call the parabola, ellipse, and hyperbola. Judging from the two very elegant solutions of the "Delian Problem" by means of intersections of these curves, Menæchmus must have succeeded well in investigating their properties.

6

Another great geometer was Dinostratus, the brother of Menæchmus and pupil of Plato. Celebrated is his mechanical solution of the quadrature of the circle, by means of the quadratrix of Hippias.

Perhaps the most brilliant mathematician of this period was Eudoxus. He was born at Cnidus about 408 B.C., studied under Archytas, and later, for two months, under Plato. He was imbued with a true spirit of scientific inquiry, and has been called the father of scientific astronomical observation. From the fragmentary notices of his astronomical researches, found in later writers, Ideler and Schiaparelli succeeded in reconstructing the system of Eudoxus with its celebrated representation of planetary motions by "concentric spheres." Eudoxus had a school at Cyzicus, went with his pupils to Athens, visiting Plato, and then returned to Cyzicus, where he died 355 The fame of the academy of Plato is to a large extent due to Eudoxus's pupils of the school at Cyzicus, among whom are Menæchmus, Dinostratus, Athenæus, and Helicon. Diogenes Laertius describes Eudoxus as astronomer, physician, legislator, as well as geometer. The Eudemian Summary

B.C.

says that Eudoxus "first increased the number of general theorems, added to the three proportions three more, and raised to a considerable quantity the learning, begun by Plato, on the subject of the section, to which he applied the analytical method." By this 'section' is meant, no doubt, the "golden section" (sectio aurea), which cuts a line in extreme and mean ratio. The first five propositions in Euclid XIII. relate to lines cut by this section, and are generally attributed to Eudoxus. Eudoxus added much to the knowledge of solid geometry. He proved, says Archimedes, that a pyramid is exactly one-third of a prism, and a cone one-third of a cylinder, having equal base and altitude. The proof that spheres are to each other as the cubes of their radii is probably due to him. He made frequent and skilful use of the method of exhaustion, of which he was in all probability the inventor. A scholiast on Euclid, thought to be Proclus, says further that Eudoxus practically invented the whole of Euclid's fifth book. Eudoxus also found two mean proportionals between two given lines, but the method of solution is not known.

8

Plato has been called a maker of mathematicians. Besides the pupils already named, the Eudemian Summary mentions the following: Theætetus of Athens, a man of great natural gifts, to whom, no doubt, Euclid was greatly indebted in the composition of the 10th book, treating of incommensurables; Leodamas of Thasos; Neocleides and his pupil Leon, who added much to the work of their predecessors, for Leon wrote an Elements carefully designed, both in number and utility of its proofs; Theudius of Magnesia, who composed a very good book of Elements and generalised propositions, which had been confined to particular cases; Hermotimus of Colophon, who discovered many propositions of the Elements and composed some on loci; and, finally, the names of Amyclas of Heraclea, Cyzicenus of Athens, and Philippus of Mende.

A skilful mathematician of whose life and works we have no details is Aristæus, the elder, probably a senior contemporary of Euclid. The fact that he wrote a work on conic sections tends to show that much progress had been made in their study during the time of Menæchmus. Aristaus wrote also on regular solids and cultivated the analytic method. His works contained probably a summary of the researches of the Platonic school.

Aristotle (384-322 B.C.), the systematiser of deductive logic, though not a professed mathematician, promoted the science of geometry by improving some of the most difficult definitions. His Physics contains passages with suggestive hints of the principle of virtual velocities. About his time there appeared a work called Mechanica, of which he is regarded by some as the author. Mechanics was totally neglected by the Platonic school.

The First Alexandrian School.

In the previous pages we have seen the birth of geometry in Egypt, its transference to the Ionian Islands, thence to Lower Italy and to Athens. We have witnessed its growth in Greece from feeble childhood to vigorous manhood, and now we shall see it return to the land of its birth and there derive new vigour.

During her declining years, immediately following the Peloponnesian War, Athens produced the greatest scientists and philosophers of antiquity. It was the time of Plato and Aristotle. In 338 B.C., at the battle of Charonea, Athens was beaten by Philip of Macedon, and her power was broken forever. Soon after, Alexander the Great, the son of Philip, started out to conquer the world. In eleven years he built up a great empire which broke to pieces in a day. Egypt

fell to the lot of Ptolemy Soter. Alexander had founded the seaport of Alexandria, which soon became "the noblest of all cities." Ptolemy made Alexandria the capital. The history of Egypt during the next three centuries is mainly the history of Alexandria. Literature, philosophy, and art were diligently cultivated. Ptolemy created the university of Alexandria. He founded the great Library and built laboratories, museums, a zoological garden, and promenades. Alexandria soon became the great centre of learning.

Demetrius Phalereus was invited from Athens to take charge of the Library, and it is probable, says Gow, that Euclid was invited with him to open the mathematical school. Euclid's greatest activity was during the time of the first Ptolemy, who reigned from 306 to 283 B.C. Of the life of Euclid, little is known, except what is added by Proclus to the Eudemian Summary. Euclid, says Proclus, was younger than Plato and older than Eratosthenes and Archimedes, the latter of whom mentions him. He was of the Platonic sect, and well read in its doctrines. He collected the Elements, put in order much that Eudoxus had prepared, completed many things of Theætetus, and was the first who reduced to unobjectionable demonstration the imperfect attempts of his predecessors. When Ptolemy once asked him if geometry could not be mastered by an easier process than by studying the Elements, Euclid returned the answer, "There is no royal road to geometry." Pappus states that Euclid was distinguished by the fairness and kindness of his disposition, particularly toward those who could do anything to advance the mathematical sciences. Pappus is evidently making a contrast to Apollonius, of whom he more than insinuates the opposite character. A pretty little story is related by Stobæus: "A youth who had begun to read geometry with Euclid, when he had learnt the first proposition, inquired,

'What do I get by learning these things?' So Euclid called his slave and said, 'Give him threepence, since he must make gain out of what he learns.'' These are about all the personal details preserved by Greek writers. Syrian and Arabian writers claim to know much more, but they are unreliable. At one time Euclid of Alexandria was universally confounded with Euclid of Megara, who lived a century earlier.

The fame of Euclid has at all times rested mainly upon his book on geometry, called the Elements. This book was so far superior to the Elements written by Hippocrates, Leon, and Theudius, that the latter works soon perished in the struggle for existence. The Greeks gave Euclid the special title of "the author of the Elements." It is a remarkable fact in the history of geometry, that the Elements of Euclid, written two thousand years ago, are still regarded by many as the best introduction to the mathematical sciences. In England they are used at the present time extensively as a text-book in schools. Some editors of Euclid have, however, been inclined to credit him with more than is his due. They would have us believe that a finished and unassailable system of geometry sprang at once from the brain of Euclid, "an armed Minerva from the head of Jupiter." They fail to mention the earlier eminent mathematicians from whom Euclid got his material. Comparatively few of the propositions and proofs in the Elements are his own discoveries. In fact, the proof of the "Theorem of Pythagoras" is the only one directly ascribed to him. Allman conjectures that the substance of Books I., II., IV. comes from the Pythagoreans, that the substance of Book VI. is due to the Pythagoreans and Eudoxus, the latter contributing the doctrine of proportion as applicable to incommensurables and also the Method of Exhaustions (Book VII.), that Theætetus contributed much toward Books X. and XIII.,

« PreviousContinue »