Page images
PDF
EPUB

be applied by simply taking the dimensions of the prism small enough; since the pressures are as the squares of its linear dimen. sions, and the effects of the applied forces such as gravity, as the cubes.

691. When forces act on the whole fluid, surfaces of equal pressure, if they exist, must be at every point perpendicular to the direction of the resultant force. For, any prism of the fluid so situated that the whole pressures on its ends are equal must experience from the applied forces no component in the direction of its length; and, therefore, if the prism be so small that from point to point of it the direction of the resultant of the applied forces does not vary sensibly, this direction must be perpendicular to the length of the prism. From this it follows that whatever be the physical origin, and the law, of the system of forces acting on the fluid, and whether it be conservative or non-conservative, the fluid cannot be in equilibrium unless the lines of force possess the geometrical property of being at right angles to a series of surfaces.

692. Again, considering two surfaces of equal pressure infinitely near one another, let the fluid between them be divided into columns of equal transverse section, and having their lengths perpendicular to the surfaces. The difference of pressure on the two ends being the same for each column, the resultant applied forces on the fluid masses composing them must be equal. Comparing this with $ 506, we see that if the applied forces constitute a conservative system, the density of matter, or electricity, or whatever property of the substance they depend on, must be equal throughout the layer under consideration. This is the celebrated hydrostatic proposition that in a fluid at rest, surfaces of equal pressure are also surfaces of equal density and of equul potential.

693. Hence when gravity is the only external force considered, surfaces of equal pressure and equal density are (when of moderate extent) horizontal planes. On this depends the action of levels, siphons, barometers, etc.; also the separation of liquids of different densities (which do not mix or combine chemically) into horizontal strata, etc., etc. The free surface of a liquid is exposed to the pressure of the atmosphere simply; and therefore, when in equilibrium, must be a surface of equal pressure, and consequently level. In extensive sheets of water, such as the American lakes, differences of atmospheric pressure, even in moderately calm weather, often produce considerable deviations from a truly level surface.

694. The rate of increase of pressure per unit of length in the direction of the resultant force, is equal to the intensity of the force reckoned per unit of volume of the fluid. Let F be the resultant force per unit of volume in one of the columns of § 692; p and p the pressures at the ends of the column, 2 its length, S its section. We have, for the equilibrium of the column,

(-p) S=SIF. Hence the rate of increase of pressure per unit of length is F.

If the applied forces belong to a conservative system, for which V and V" are the values of the potential at the ends of the column, we have ($-504)

V'- V=-IFP, where p is the density of the fluid. This gives

o-p=-|(V-V),

dp= -pd V. Hence in the case of gravity as the only impressed force the rate of increase of pressure per unit of depth in the fluid is e, in gravitation measure (usually employed in hydrostatics). In kinetic or absolute measure (8 189) it is gp.

If the fluid be a gas, such as air, and be kept at a constant temperature, we have prop, where c denotes a constant, the reciprocal of H, the height of the homogeneous atmosphere,' defined ($ 695) below. Hence, in a calm atmosphere of uniform temperature we have

al --cdV; and from this, by integration,

[ocr errors]

where po is the pressure at any particular level (the sea-level, for instance) where we choose to reckon the potential as zero.

When the differences of level considered are infinitely small in comparison with the earth's radius, as we may practically regard them, in measuring the heights of mountains, or of a balloon, by the barometer, the force of gravity is constant, and therefore differences of potential (force being reckoned in units of weight) are simply equal to differences of level. Hence if x denote height of the level of pressure p above that of Po, we have, in the preceding formulae, V = x, and therefore

p=0.6-; that is, 695. If the air be at a constant temperature, the pressure diminishes in geometrical progression as the height increases in arithmetical progression. This theorem is due to Halley. Without formal mathematics we see the truth of it by remarking that differences of pressure are (8 694) equal to differences of level multiplied by the density of the fluid, or by the proper mean density when the density differs sensibly between the two stations. But the density, when the temperature is constant, varies in simple proportion to the pressure, according to Boyle's law. Hence differences of pressure between pairs of stations differing equally in level are proportional to the proper mean values of the whole pressure, which is the well-known compound interest law. The rate of diminution of pressure per unit of length upwards in proportion to the whole pressure at any point, is of course equal to the reciprocal of the height above that point that the atmosphere must have, if of constant density, to give that pressure by its weight. The height thus defined is commonly called the height of the homogeneous atmosphere,' a

very convenient conventional expression. It is equal to the product of the volume occupied by the unit mass of the gas at any pressure into the value of that pressure reckoned per unit of area, in terms of the weight of the unit of mass. If we denote it by 8, the exponential expression of the law is

+ = + , which agrees with the final formula of $ 694.

The value of H for dry atmospheric air, at the freezing temperature, according to Regnault, is, in the latitude of Paris, 799,020 centimetres, or 26,215 feet. Being inversely as the force of gravity in different.latitudes (S 187), it is 798,533 centimetres, or 26,199 fee, in the latitude of Edinburgh and Glasgow.

696. It is both necessary and sufficient for the equilibrium of an incompressible fluid completely filling a rigid closed vessel, and influenced only by a conservative system of forces, that its density be uniform over every equipotential surface, that is to say, every surface cutting the lines of force at right angles. If, however, the boundary, or any part of the boundary, of the fluid mass considered, be not rigid; whether it be of flexible solid matter (as a membrane, or a thin sheet of elastic solid), or whether it be a mere geometrical boundary, on the other side of which there is another fluid, or nothing [a case which, without believing in vacuum as a reality, we inay admit in abstract dynamics ($ 391) 1, a farther condition is necessary to secure that the pressure from without shall fulfil the hydrostatic equation at every point of the boundary. In the case of a bounding membrane, this condition must be fulfilled either through pressure artificially applied from without, or through the interior elastic forces of the matter of the membrane. In the case of another fluid of different density touching it on the other side. of the boundary, all round or over some part of it, with no separating membrane, the condition of equilibrium of a heterogeneous fluid is to be fulfilled relatively to the whole fluid mass made up of the two; which shows that at the boundary the pressure must be constant and equal to that of the fluid on the other side. Thus water, oil, mercury, or any other liquid, in an open vessel, with its free surface exposed to the air, requires for equilibrium simply that this surface be level.

697. Recurring to the consideration of a finite mass of Auid completely filling a rigid closed vessel, we see, from what precedes, that, if homogeneous and incompressible, it cannot be disturbed from equilibrium by any conservative system of forces; but we do not require the analytical investigation to prove this, as we should have 'the perpetual motion' if it were denied, which would violate the hypothesis that the system of forces is conservative. On the other hand, a non-conservative system of forces cannot, under any circumstances, equilibrate a fluid which is either uniform in density throughout, or of homogeneous substance, renderei heterogeneous in density only through difference of pressure. But if the forces, though not

conservative, be such that through every point of the space occupied by the fluid a surface may be drawn which shall cut at right angles all the lines of force it meets, a heterogeneous fuid will rest in equilibrium under their influence, provided (8 692) its density, from point to point of every one of these orthogonal surfaces, varies inversely as the product of the resultant force into the thickness of the infinitely thin layer of space between that surface and another of the orthogonal surfaces infinitely Dear it on either side. (Compare $ 506).

698. If we imagine all the iuid to become rigid except an infinitely thin closed tubular portion lying in a surface of equal. density, and if the fluid in this tubular circuit be moved any length along the tube and left at rest, it will remain in equilibrium in the new position, all positions of it in the tube being indifferent because of its homogeneousness. Hence the work (positive or negative) done by the force (X, Y, Z on any portion of the fluid in any displacement along the tube is balanced by the work (negative or positive) done on the remainder of the fluid in the tube. Hence a single particle, acted on only by X, Y, Z, while moving round the circuit, that is moving along any closed curve on a surface of equal density, has, at the end of one complete circuit, done just as much work against the force in some parts of its course, as the forces have done on it in the re. mainder of the circuit.

699. The following imaginary example, and its realization in a subsequent section (701), show a curiously interesting practical application of the theory of Auid equilibrium 'under extraordinary circumstances, generally regarded as a merely, abstract analytical theory, practically useless and quite unnatural, 'because forces in nature follow the conservative law.

700: Let the lines of force be circles, with their centres all in one line, and their planes perpendicular to it. They are cut at right angles by planes through this axis; and therefore a fluid may be in equilibrium under such a system of forces. The system will not be conservative if the intensity of the force be according to any other law than inverse proportionality to distance from this axial line; and the fluid, to be in equilibrium, must be heterogeneous, and be so distributed as to vary in density from point to point of every plane through the axis, inversely as the product of the force into the distance from the axis. But from one such plane to another it may be either uniform in density, or may vary arbitrarily. To particularize farther, we may suppose the force to be in direct simple proportion to the distance from the axis. Then the fluid will be in equilibrium if its density varies from point to point of every plane through the axis, inversely as the square of that distance. If we still farther particularize by making the force uniform all round each circular line of force, the distribution of force becomes precisely that of the kinetic reactions of the parts of a rigid body against accelerated rotation. The fluid pressure will (8 691) be equal over each plane through the axis And in one such plane, which we may imagine carried round the axis in the direction of the force, the fluid pressure will increase in simple proportion to the angle at a rate per unit angle (8 55) equal to the product of the density at unit distance into the force at unit distance. Hence it must be remarked, that if any closed line (or circuit) can be drawn round the axis, without leaving the fluid, there cannot be equilibrium without a firm partition cutting every such circuit, and maintaining the difference of pressures on the two sides of it, corresponding to the angle 27. Thus, if the axis pass through the fluid in any part, there must be a partition extending from this part of the axis continuously to the outer bounding surface of the fluid. Or if the bounding surface of the whole fluid be annular (like a hollow anchor-ring, or of any irregular shape), in other words, if the fluid fills a tubular circuit; and the axis (A) pass through the aperture of the ring (without passing into the fluid); there must be a firm partition (CD) extending somewhere continuously across the channel, or passage or tube, to stop the circulation of the fluid round it; otherwise there. could not be equilibrium with the supposed forces in action. If we further suppose the density of the fluid to be uniform round each of the circular lines of force in the system we have so far considered (so that the density shall be equal over every circular cylinder having the line of their centres for its axis, and shall vary from one such cylindrical surface to another, inversely as the squares of their radii), we may, without disturbing the equilibrium, impose any conservative system of force in lines perpendicular to the axis; that is (8 506), any system of force in this direction, with intensity varying as some function of the distance. If this function be the simple distance, the superimposed system of force agrees precisely with the reactions against curvature, that is to say, the centrifugal forces, of the parts of a rotating rigid body.

[graphic]

701. Thus we arrive at the remarkable conclusion, that if a rigid closed box be completely filled with incompressible heterogeneous fluid, of density varying inversely as the square of the distance from a certain line, and if the box be movable round this line as a fixed axis,' and be urged in any way by forces applied to its outside, the fluid will remain in equilibrium relatively to the box; that is to say, will move round with the box as if the whole were one rigid body, and will come to rest with the box if the box be brought again to rest: provided always the preceding condition as to partitions be fulfilled if the axis pass through the fluid, or be surrounded by continuous lines of Auid. For, in starting from rest, if the Auid moves like a rigid solid, we have reactions against acceleration, tangential to the circles of motion, and equal in amount to wr per unit of mass of the fluid at distance r from the axis, w being the rate

« PreviousContinue »