Page images
PDF
EPUB

499.]

RECAPITULATION.

143

If any closed curve be drawn, and the line-integral of the magnetic force taken completely round it, then, if the closed curve is not linked with the circuit, the line-integral is zero, but if it is linked with the circuit, so that the current i flows through the closed curve, the line-integral is 4 π i, and is positive if the direction of integration round the closed curve would coincide with that of the hands of a watch as seen by a person passing through it in the direction in which the electric current flows. To a person moving along the closed curve in the direction of integration, and passing through the electric circuit, the direction of the current would appear to be that of the hands of a watch. We may express this in another way by saying that the relation between the directions of the two closed curves may be expressed by describing a right-handed screw round the electric circuit and a right-handed screw round the closed curve. If the direction of rotation of the thread of either, as we pass along it, coincides with the positive direction in the other, then the line-integral will be positive, and in the opposite case it will be negative.

[ocr errors][merged small]

Relation between the electric current and the lines of magnetic induction indicated by a right-handed screw.

499.] Note. The line-integral 4 Ti depends solely on the quantity of the current, and not on any other thing whatever. It does not depend on the nature of the conductor through which the current is passing, as, for instance, whether it be a metal or an electrolyte, or an imperfect conductor. We have reason for believing that even when there is no proper conduction, but

merely a variation of electric displacement, as in the glass of a Leyden jar during charge or discharge, the magnetic effect of the electric movement is precisely the same.

Again, the value of the line-integral 4 i does not depend on the nature of the medium in which the closed curve is drawn. It is the same whether the closed curve is drawn entirely through air, or passes through a magnet, or soft iron, or any other substance, whether paramagnetic or diamagnetic.

500.] When a circuit is placed in a magnetic field the mutual action between the current and the other constituents of the field depends on the surface-integral of the magnetic induction through any surface bounded by that circuit. If by any given motion of the circuit, or of part of it, this surface-integral can be increased, there will be a mechanical force tending to move the conductor or the portion of the conductor in the given manner.

The kind of motion of the conductor which increases the surfaceintegral is motion of the conductor perpendicular to the direction of the current and across the lines of induction.

If a parallelogram be drawn, whose sides are parallel and proportional to the strength of the current at any point, and to the magnetic induction at the same point, then the force on unit of length of the conductor is numerically equal to the area of this parallelogram, and is perpendicular to its plane, and acts in the direction in which the motion of turning the handle of a righthanded screw from the direction of the current to the direction of the magnetic induction would cause the screw to move.

Hence we have a new electromagnetic definition of a line of magnetic induction. It is that line to which the force on the conductor is always perpendicular.

It may also be defined as a line along which, if an electric current be transmitted, the conductor carrying it will experience no force. 501.] It must be carefully remembered, that the mechanical force which urges a conductor carrying a current across the lines of magnetic force, acts, not on the electric current, but on the conductor which carries it. If the conductor be a rotating disk or a fluid it will move in obedience to this force, and this motion may or may not be accompanied with a change of position of the electric current which it carries. But if the current itself be free to choose any path through a fixed solid conductor or a network of wires, then, when a constant magnetic force is made to act on the system, the path of the current through the conductors is not permanently

501.]

RECAPITULATION.

145

altered, but after certain transient phenomena, called induction currents, have subsided, the distribution of the current will be found to be the same as if no magnetic force were in action.

The only force which acts on electric currents is electromotive force, which must be distinguished from the mechanical force which is the subject of this chapter.

Fig. 25.

Relations between the positive directions of motion and of rotation indicated by three right-handed screws.

[blocks in formation]

CHAPTER II.

AMPÈRE'S INVESTIGATION OF THE MUTUAL ACTION OF

ELECTRIC CURRENTS.

502.] WE have considered in the last chapter the nature of the magnetic field produced by an electric current, and the mechanical action on a conductor carrying an electric current placed in a magnetic field. From this we went on to consider the action of one electric circuit upon another, by determining the action on the first due to the magnetic field produced by the second. But the action of one circuit upon another was originally investigated in a direct manner by Ampère almost immediately after the publication of Örsted's discovery. We shall therefore give an outline of Ampère's method, resuming the method of this treatise in the next chapter.

The ideas which guided Ampère belong to the system which admits direct action at a distance, and we shall find that a remarkable course of speculation and investigation founded on these ideas has been carried on by Gauss, Weber, J. Neumann, Riemann, Betti, C. Neumann, Lorenz, and others, with very remarkable results both in the discovery of new facts and in the formation of a theory of electricity. See Arts. 846-866.

The ideas which I have attempted to follow out are those of action through a medium from one portion to the contiguous portion. These ideas were much employed by Faraday, and the development of them in a mathematical form, and the comparison of the results with known facts, have been my aim in several published papers. The comparison, from a philosophical point of view, of the results of two methods so completely opposed in their first principles must lead to valuable data for the study of the conditions of scientific speculation.

503.] Ampère's theory of the mutual action of electric currents is founded on four experimental facts and one assumption.

505.]

AMPÈRE'S SCIENTIFIC METHOD.

147

Ampère's fundamental experiments are all of them examples of what has been called the null method of comparing forces. See Art. 214. Instead of measuring the force by the dynamical effect of communicating motion to a body, or the statical method of placing it in equilibrium with the weight of a body or the elasticity of a fibre, in the null method two forces, due to the same source, are made to act simultaneously on a body already in equilibrium, and no effect is produced, which shews that these forces are themselves in equilibrium. This method is peculiarly valuable for comparing the effects of the electric current when it passes through circuits of different forms. By connecting all the conductors in one continuous series, we ensure that the strength of the current is the same at every point of its course, and since the current begins everywhere throughout its course almost at the same instant, we may prove that the forces due to its action on a suspended body are in equilibrium by observing that the body is not at all affected by the starting or the stopping of the current.

504.] Ampère's balance consists of a light frame capable of revolving about a vertical axis, and carrying a wire which forms two circuits of equal area, in the same plane or in parallel planes, in which the current flows in opposite directions. The object of this arrangement is to get rid of the effects of terrestrial magnetism on the conducting wire. When an electric circuit is free to move it tends to place itself so as to embrace the largest possible number of the lines of induction. If these lines are due to terrestrial magnetism, this position, for a circuit in a vertical plane, will be when the plane of the circuit is east and west, and when the direction of the current is opposed to the apparent course of the

sun.

By rigidly connecting two circuits of equal area in parallel planes, in which equal currents run in opposite directions, a combination is formed which is unaffected by terrestrial magnetism, and is therefore called an Astatic Combination, see Fig. 26. It is acted on, however, by forces arising from currents or magnets which are so near it that they act differently on the two circuits.

505.] Ampère's first experiment is on the effect of two equal currents close together in opposite directions. A wire covered with insulating material is doubled on itself, and placed near one of the circuits of the astatic balance. When a current is made to pass through the wire and the balance, the equilibrium of the balance remains undisturbed, shewing that two equal currents close together

« PreviousContinue »