Page images
PDF
EPUB

Composition of two uniform circular motions.

This is intimately connected with the explanation of two sets of important phenomena,—the rotation of the plane of polarization of light, by quartz and certain fluids on the one hand, and by transparent bodies under magnetic forces on the other. It is a case of the hypotrochoid, and its corresponding mode of description will be described in a future section. It will also appear in kinetics as the path of a pendulum-bob which contains a gyroscope in rapid rotation.

Fourier's
Theorem.

75. Before leaving for a time the subject of the composition of harmonic motions, we must, as promised in $ 62, devote some pages to the consideration of Fourier's Theorem, which is not only one of the most beautiful results of modern analysis, but may be said to furnish an indispensable instrument in the treatment of nearly every recondite question in modern physics. To mention only sonorous vibrations, the propagation of electric signals along a telegraph wire, and the conduction of heat by the earth’s crust, as subjects in their generality intractable without it, is to give but a feeble idea of its importance. The following seems to be the most intelligible form in which it can be presented to the general reader : THEOREM.— A complex harmonic function, with a constant term

added, is the proper expression, in mathematical language, for any arbitrary periodic function ; and consequently can express any function whatever between definite values of the variable.

76. Any arbitrary periodic function whatever being given, the amplitudes and epochs of the terms of a complex harmonic function which shall be equal to it for every value of the independent variable, may be investigated by the “method of indeterminate coefficients.”

Assume equation (14) below. Multiply both members first

2ιπξ by cos and integrate from 0 to p: then multiply by

р
2ίπε
sin ds and integrate between same limits. Thus instantly

р
you find (13).

Theorein.

This investigation is sufficient as a solution of the problem, Fourier's -to find a complex harmonic function expressing a given arbitrary periodic function,—when once we are assured that the problem is possible; and when we have this assurance, it proves that the resolution is determinate; that is to say, that no other complex harmonic function than the one we have found can satisfy the conditions.

For description of an integrating machine by which the coefficients Ai, B; in the Fourier expression (14) for any given arbitrary function may be obtained with exceedingly little labour, and with all the accuracy practically needed for the harmonic analysis of tidal and meteorological observations, see Proceedings of the Royal Society, Feb. 1876, or Chap. v. below.

77. The full theory of the expression investigated in $ 76 will be made more intelligible by an investigation from a different point of view.

Let F(x) be any periodic function, of period p. That is to
let F (c) be any function fulfilling the condition
F(x + ip) = F(x)

. (1),
where i denotes any positive or negative integer. Consider the
integral

F(x) dac
a' + 2

say,

[ocr errors]

less than F(-) Sa

pe da

re dx

and greater than F(-) 6,2

where a, c, é denote any three given quantities. Its value is
less

if a
a + ac

,a’ + oca!
and z' denote the values of x, either equal to or intermediate
between the limits c and c', for which F(x) is greatest and least
respectively. But

dx 1
tan

(2),
a* + aces
and therefore

F(x) ad.

<F () (tan tan

[ocr errors]
[ocr errors]

a

[ocr errors]

(3)

and

[ocr errors]

Fourier's
Theorem.

[ocr errors]

Hence if A be the greatest of all the values of F(x), and B the
least,

F(x)
adx

SA tan
a® + * 2

..(4) and

>B - tan

2
Also, similarly,
F(x) adac

c
<A ( tan

+ a* + 20%

...(5)

Ć and

> B ( tan

[ocr errors]
[ocr errors]

97

[ocr errors]
[ocr errors]
[ocr errors]
[ocr errors]

Adding the first members of (3), (4), and (5), and comparing with the corresponding sums of the second members, we find F(x) adoc < tan

- tan

+ tan as + aces

(6) and tan tan + BI

tan

+ tan
But, by (1),
F(x) dx

1
a' + 2?
-- la® + (x + ip)

(7). Now if we denote /

1 by v,
1

1
1

1
a* + (x + ip) 2av (28 + ip - av 3 + ip + av
and therefore, taking the terms corresponding to positive and
equal negative values of i together, and the terms for i = 0 sepa-
rately, we have

1
1 / 1

α - αυ
Σ
(x + ip)
2uv lac

ipi
1

*-1 i*p* – (c + av)"}
7 (2C – av) 7 (2C + av))
cot

cot
р

р 2παυ

2παυ sin

sin 2apy

р

apu P
2παυ

2πα

[ocr errors]

- av

[ocr errors]

2 + av

+ C + av

[ocr errors]

T

T

il

παυ

[ocr errors]
[ocr errors]

cos

[blocks in formation]
[ocr errors]

P

[ocr errors][merged small]
[merged small][ocr errors][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]
[merged small][merged small][merged small][ocr errors][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

Next, denoting temporarily, for brevity, c P by S, and putting

[ocr errors][ocr errors][ocr errors][merged small][merged small][merged small][ocr errors][merged small][ocr errors][subsumed][subsumed][merged small][merged small][merged small][merged small][merged small][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][merged small][ocr errors][subsumed][subsumed][ocr errors]

Now let d'=-c, and x = E' -Ě,

being a variable, and & constant, so far as the integration is concerned ; and let

F () = (0 + $) = $(&), and therefore F(x) = $($ +),

F (Z) = 4(+2).

Fourier's
Theorem.

The preceding pair of inequalities becomes
$($ + x). 2 tan

+ A T - 2 tan

[ocr errors]

2 tan-') US $(8)dx'+ 23*7" " ¢¢€)dę' cos

and $($+2). 2 tan-
+ BT - - 2 tan

(11)
a
TS

2i7(E-)

P
where $ denotes any periodic function whatever, of period p.

Now let c be a very small fraction of p. In the limit, where c
is infinitely small, the greatest and least values of $(') for values
of & between & + c and $-c will be infinitely nearly equal to one
another and to $($); that is to say,

$($ + x) = $($+z) = $($).
Next, let a be an infinitely small fraction of c. In the limit

[blocks in formation]

P

e=€

) ... 1

and

-1.
Hence the comparison (11) becomes in the limit an equation
which, if we divide both members by 7, gives

2in('-))

...(12).
P

P
This is the celebrated theorem discovered by Fourier* for the
development of an arbitrary periodic function in a series of simple
harmonic terms, A formula included in it as a particular case
had been given previously by Lagranget.

2i7(E-)
If, for cos

we take its value
P
2ίπξ' 2ιπξ 2ίπξ' 2ιπξ

sin
P
P

P P
and introduce the following notation :-

1

1

[ocr errors]

COS

+ sin

[ocr errors]
[ocr errors][merged small]

P Jo
2
P

2ιπξ
Ai
φ(ξ) COS


P Jo

P 2

2ιπξ
B;

P
* Théorie analytique de la Chaleur. Paris, 1822.
it Anciens Mémoires de l'Académie de Turin.

« PreviousContinue »