Page images
PDF
EPUB

It is by no means necessary to resort to the criteria of system (C) in this case. From (13) page 94 we learn that Ta bears a finite ratio to Ë (2)", and by writing the nth term

[blocks in formation]

13. We will now examine the series given us by the methods of Chap. V.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][ocr errors][merged small]

and thus the series ultimately diverges faster than any diverging geometrical series however large ≈ may be.

As it stands then our results are utterly worthless since we have obtained divergent series as arithmetical equivalents of finite quantities and in order to enable us to approximate to the numerical values of the latter. We shall therefore recommence the investigations of Chap. V, finding expressions for the remainder after any term of the expansion obtained, so that there will always be arithmetical equality between the two sides of the identity, and we shall be able to learn the degree of approximation obtained by examining the magnitude of the remainder or complementary term.

14. The solution of the problem of the convergency or divergency of series that has been given is.so complete that it is scarcely possible to imagine how a case of failure could arise. But we have not only obtained a test for con

vergence, we have also classified it. Let us consider for a moment any infinite series. Its nth term un must vanish, if the series is convergent, but it must not become a zero of too low an order; otherwise the series will be 1 divergent in spite of un becoming ultimately zero. Thus the zero is of

too low an order, since un

1

n2

n

[blocks in formation]

high order, since un represents a convergent series. Now the series on page 128 give us a classified list of forms of zero. The zeros of any one form are separated by the value m=1 into those that are of too low an order for convergency and those that are not. But between any zero value that gives convergency and that corresponding to m=1 (which gives divergency) come all the subsequent forms of zero. Series comparable with the series produced by giving many value >1 in the rth class converge infinitely more slowly than those with a greater value of m, but infinitely faster than any similarly related to the (r+1)th or subsequent classes, whatever value be given to m in the second case. Thus we may refer the convergency of any series to a definite standard by naming the class and the value of m of a series with which it is ultimately comparable.

15. Tchebechef in a remarkable paper (Liouville, xvII. 366) has shewn that if we take the prime numbers 2, 3, 5... only, the series

[blocks in formation]

is convergent. Compare Ex. 10 at the end of the Chapter.

A method of testing convergence is given by Kummer (Crelle, XIII.), inferior, of course, to those of Bertrand, &c., but worthy of notice, as it is closely analogous to his method of approximating to the value of very slowly converging series (Bertrand, Diff. Cal. 261). It is by finding a function v such that vun=0 ultimately, but · Un+1 >0 when n is ∞. His further

paper is in Crelle, xvI. 208.

vnun Unta

We shall not touch the question of the meaning of divergent series; De Morgan has considered it in his Differential Calculus, or an article by Prehn (Crelle, XLI. 1) may be referred to.

EXERCISES.

1. Find by an application of the fundamental proposition two limits of the value of the series

[blocks in formation]

In particular shew that if a = 1 the numerical value of the series will lie between the limits and

[blocks in formation]

π

π

4

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][subsumed][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small]

5. The hypergeometrical series

ab
1+ x+
cd

a (a + 1) b (b + 1)

x2 + &c.

c (c + 1) d (d + 1)

is convergent if x <1 divergent if x > 1.

If = 1 it is convergent only when c+d-a-b>1.

6. For what values of x is the following series convergent?

[merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

is convergent if u+-2u+1+u, be constant or increase with n.

[blocks in formation]

shew that the series converges only when a<1, or when a = 1, and ẞ>1.

10. A series of numbers p1, P, ... are formed by the formula

[blocks in formation]

shew that the series F (p1) + F (p2) + &c., will be convergent

if

F(2), F(3)

+ + &c. is convergent.

log 2 log 3

[Bonnet, Liouville, VIII. 73.]

[merged small][merged small][merged small][ocr errors][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small]

(n) such

Hence shew that there can be no test-function

that a series converges or diverges according as 4 (n)÷u, does not or does vanish when n is infinite.

[Abel, Crelle, III. 79.]

12. Shew that if ƒ (x) be such that

[blocks in formation]

when x = 0, the series u,+u,+...... and ƒ (u') +ƒ (u2) +...... converge and diverge together.

13. Prove from the fundamental proposition Art. 6 that the two series

$ (1) + $ (2) + $ (3) +

m being positive are con

$ (1) +mp (m) + m2

(m2) + .....

vergent or divergent together.

14. Deduce Bertrand's criteria for convergence from the theorem in the last example.

[Paucker, Crelle, XLIII. 138.]

15. If α +α ̧x+α ̧x2+ &c. be a series in which a, a1 &c., do not contain x and it is convergent for x = 8 shew that it is convergent for x <8 even when all the coefficients are taken with the positive sign.

16. The differential coefficient of a convergent series remains finite within the limits of its convergency. Examine the case of u„= $(n) cos no. Ex. 4 (n) =, when the sum

1 2

of the original series is — — log (2 – 2 cos x).

[ocr errors]

1

« PreviousContinue »