Page images
PDF
EPUB

42

HIP GIRDLE

CHAP.

It is

Ornithorhynchus comes nearest to the reptile in the fact that this axis is nearly at right angles to that of the sacrum. particularly interesting to find that this peculiarity of Ornithorhynchus is only acquired later in life, and that the pelvis of the foetus conforms in these angles to the adults of other mammalian groups. In any case, the backward rotation of the pelvis is a mammalian characteristic, and it is most nearly approached among reptiles by the extinct Anomodontia, whose affinities to mammals will be dealt with on a later page (p. 90). Another peculiarity of the mammalian pelvis appears to be the cotyloid bone already referred to. In the Rabbit this bone completely shuts out the pubis from any share in the acetabular cavity; later it ankyloses with that bone. In Ornithorhynchus the cotyloid or os acetabuli is a larger element of the girdle than is the pubis. In other mammals, therefore, it seems to be a rudimentary structure. But it seems to be a bone peculiar to and thus distinctive of the mammals as compared with other vertebrates. The acetabular cavity is perforated in Echidna as in birds; but in certain Rodents the same region is very thin and only closed by membrane, as in Circolabes villosus.

The number and the arrangement of the bones in the hind-limb correspond exactly to those of the fore-limb. The femur, which corresponds to the humerus, shows some diversities of form. The neck, which follows upon the almost globular head, the surface of articulation to the acetabular cavity of the pelvis, has two roughened areas or tuberosities for the insertions of muscles. A third such area, known as the third trochanter, is present or absent as the case may be, and its presence or absence is of systematic import. As a general rule the thigh-bones of the ancient types of mammals are smoother and less roughened by the presence of these three trochanters than in their modern representatives. The radius and the ulna are represented in the hind-leg by the tibia and the fibula. These bones are not crossed, and do not allow of rotation as is the case with the radius and the ulna. In Ungulate animals there is the same tendency to the shortening and rudimentary character of the fibula that occurs in the case of the ulna, but it is more marked. It has been shown in tracing the history of fossil Ungulates that the hind-limbs in their degree of degeneration are as a rule ahead of the fore-limbs. This is natural when we reflect that

[blocks in formation]

In

the hind-limbs must have preceded the fore-limbs in their thorough adaptation to the cursorial mode of progression. the Mammalia the ankle-joint is always what is termed cruro-tarsal, i.e. between the ends of the limb-bones and the proximal row of tarsals; not in the middle of the tarsus as in some Sauropsida (reptiles and birds). The bones of the ankle are much like those of the hand; but there are never more than two bones in the proxi- t mal row, which are the astragalus and the calcaneum. The former is perhaps to be looked upon as the equivalent of the cuneiform and lunar together. But the views as to the homologies of the tarsal bones differ widely. Below these is the navicular, regarded as a centrale. The distal row of the tarsus has four bones, three cuneiforms and a cuboid. Reduction is effected by the soldering together of two cuneiforms as in the Horse, by the fusion of the navicular and cuboid as in the Deer. No mammal has more than five toes, and the number tends to become reduced in cursorial animals Rodents, Ungulates, Kangaroos).

[graphic]

FIG. 32.--Anterior aspect of
right femur of Rhinoceros
(Rhinoceros indicus). x.
h, Head; t, great trochan-
ter; t', third trochanter.
(From Flower's Osteology.)

Teeth. The teeth of the Mammalia1 differ from those of other vertebrated animals in a number of important points. These, however, entirely concern the form of the adult teeth, their position in the mouth, and the succession of the series of teeth. Developmentally and histologically there are no fundamental divergences from the teeth of vertebrates lower in the scale.

In mammals, as for example in the Dog, the teeth consist of three kinds of tissue-the enamel, the dentine, and the cement. The enamel is derived from the epidermis of the mouth cavity, and the two remaining constituents from the underlying dermis. The teeth originate quite independently of the jaws, with which they are later so intimately connected; the independence of origin being one of the facts upon which the current theory

1 Cf. Tomes, A Manual of Dental Anatomy, 5th ed. London, 1898.

44

STRUCTURE OF TEETH

[merged small][ocr errors][ocr errors][merged small][ocr errors][ocr errors][ocr errors]

CHAP.

It has been pointed out that the scales of the Elasmobranch fishes consist of a cap of enamel upon a base of dentine, the former being derived from the epidermis and modelled upon

a papilla of the dermis whose cells secrete the dentine. The fact that similar structures arise within the mouth (i.e. the teeth) is explicable when it is remembered that the mouth itself is a late invagination from the outside of the body, and that therefore the retention by its tissues of the capacity to produce such structures is not remarkable.

[graphic]
[graphic]

The relations of the three constituents of the tooth in its simplest form is shown in the accompanying diagram, where FIG. 33.-Diagrammatic sections of various forms the intimate structure of of teeth. I, Incisor or tusk of Elephant, with pulp cavity persistently open at base; the enamel, dentine, and II, Human incisor during development, with root imperfectly formed, and pulp cavity cement (or crusta petrosa widely open at base; III, completely formed as it is sometimes called) Human incisor, with pulp cavity opening by is not indicated. The latter a contracted aperture at base of root; IV, Human molar with broad crown and two has the closest resemblance roots; V, molar of the Ox, with the enamel covering the crown deeply folded, and the to bone. depressions filled up with cement; the sur:

face is worn by use, otherwise the enamel

coating would be continuous at the top of the ridges. In all the figures the enamel is black, the pulp white; the dentine represented by horizontal lines, and the cement by dots. (After Flower and Lydekker.)

The dentine is traversed by fine canals which run parallel to each other and anastomose here and there. The enamel is formed of long prismatic

fibres, and is excessively hard in structure, containing less animal matter than the other tooth tissues. To this fact is frequently

[blocks in formation]

due the complicated patterns upon the grinding teeth of Ungulates, which are produced by the wearing away of the dentine and the cement, and the resistance of the enamel.

The centre of the tooth papilla remains soft and forms the pulp of the tooth, which is continuous with the underlying tissues of the gum by a fine canal or a wide cavity as the case may be. In teeth which persistently grow throughout the lifetime of the animal, as for example the incisors of the Rodents, there is a wide intercommunication between the cavity of the tooth and the tissues of the gum; only a narrow canal exists in, for instance, the teeth of Man, and in fact in the vast majority of cases. The three constituents of the typical teeth are not, however, found in all mammals; the layer which is sometimes wanting is the enamel. This is the case with most Edentates: but the interesting discovery has been made (by Tomes) that in the Armadillo there is a downgrowth of the epidermis similar to that which forms the enamel in other mammals, a rudimentary " enamel organ."

Teeth are present in nearly all the Mammalia; and where they are absent there is frequently some evidence to show that the loss is a recent one. The Whalebone Whales, the Monotremata, Manis, and the American Anteaters among the Edentata are devoid of teeth in the adult state. In several of these instances, however, more or less rudimentary teeth have been found, which either never cut the gums or else become lost early in life. The latter is the case with Ornithorhynchus, where there are teeth up to maturity (see p. 113). Kükenthal has found germs of teeth in Whales, and Röse in the Oriental Manis. The loss of the teeth in these cases seems to have some relation to the nature of the food. In ant-eating mammals, as in the Anteaters and Echidna, the ants are licked up by the long and viscid tongue, and require no mastication. Yet it must be remembered that Orycteropus is also an anteater, like the Marsupial Myrmecobius, both of which genera have teeth.

The first of the essential peculiarities of the mammalian teeth as compared with those of other vertebrates concerns the position of the teeth in the mouth. There is no undoubted mammal extinct or living in which the teeth are attached to any bones other than the dentary, the maxilla, and the pre

46

TEETH AND CLASSIFICATION

CHAP.

maxilla. There are no vomerine, palatine, or pterygoid teeth, such as are met with in Amphibia and Reptilia.

The other peculiarities of the mammalian teeth, though true of the great majority of cases, are none of them absolutely universal.

But it is necessary to go into the subject at some length on account of the great importance which has been laid upon the teeth in deciding questions of relationship; moreover, largely no doubt on account of their hardness and imperishability, our knowledge of certain extinct forms of Mammalia is entirely based upon a few scattered teeth; while of some others, notably of the Triassic and Jurassic genera, there is not a great deal of evidence except that which is furnished by the teeth. Indeed the important place which odontography holds in comparative anatomy is from many points of view to be regretted, though inevitable. "In hardly any other system of organs of vertebrated animals," remarks Dr. Leche, " is there so much danger of confounding the results of convergence of development with true homologies, for scarcely any other set of organs is less conservative and more completely subservient to the lightest impulse from without." Affinities as indicated by the teeth are sometimes in direct contradiction to those afforded by other organs; or, as in the case of the simple Toothed Whales, no evidence of any kind is forthcoming. Dr. Leche has pointed out

that, judged merely from its teeth, Arctictis would be referred to the Raccoons, though it is really a Viverrid; while Bassariscus, which Sir W. Flower showed to be a Raccoon, is in its teeth a Viverrid. Mr. Bateson has been obliged to hamper the subject with another difficulty.

In dealing with the variations of teeth,' Mr. Bateson has brought together an immense number of facts, which tend to prove that the variability of these structures is much greater than had been previously recognised; that this variability is often symmetrical; and that in some animals, as in " Canis cancrivorus, a South American fox, the majority showed some abnormality." When we learn from Mr. Bateson that "of Felis fontanieri, an aberrant leopard, two skulls only are known, both showing dental abnormalities," it seems dangerous to rear too lofty a superstructure upon a single fossil jaw. It must be noted too that, 1 Materials for the Study of Variation, London, 1894.

« PreviousContinue »