Page images
PDF
EPUB

poraries it is not too much to say that, as in the case of plants, there is not one the structure, habits, and life-history of which are yet fully known to us. The male of the Cynips, which produces the common King Charles Oak Apple, has only recently been discovered, those of the root-feeding Aphides, which live in hundreds in every nest of the yellow Meadow Ant (Lasius flavus) are still unknown; the habits and mode of reproduction of the common Eel have only just been discovered; and we may even say generally that many of the most interesting recent discoveries have relation to the commonest and most familiar animals.

IMPORTANCE OF THE SMALLER ANIMALS

Whatever pre-eminence Man may claim for himself, other animals have done far more to affect the face of nature. The principal agents have not been the larger or more intelligent, but rather the smaller, and individually less important, species. Beavers may have dammed up many of the rivers of Brit

H

ish Columbia, and turned them into a succession of pools or marshes, but this is a slight matter compared with the action of earthworms and insects in the creation of vegetable soil; of the accumulation of animalcules in filling up harbours and lakes; or of Zoophytes in the construction of coral islands.

Microscopic animals make up in number what they lack in size. Paris is built of Infusoria. The Peninsula of Florida, 78,000 square miles in extent, is entirely composed of coral débris and fragments of shells. Chalk consists mainly of Foraminifera and fragments of shells deposited in a deep sea. The number of shells required to make up a cubic inch. is almost incredible. Ehrenberg has estimated that of the Bilin polishing slate which caps. the mountain, and has a thickness of forty feet, a cubic inch contains many hundred million shells of Infusoria.

In another respect these microscopic organ

1 Prof. Drummond (Tropical Africa) dwells with great force on the manner in which the soil of Central Africa is worked up by the White Ants.

isms are of vital importance. Many diseases are now known, and others suspected, to be entirely due to Bacteria and other minute forms of life (Microbes), which multiply incredibly, and either destroy their victims, or after a while diminish again in numbers. We live indeed in a cloud of Bacteria. At the observatory of Montsouris at Paris it has been calculated that there are about 80 in each cubic meter of air. Elsewhere, however, they are much more numerous. Pasteur's re

searches on the Silkworm disease led him to the discovery of Bacterium anthracis, the cause of splenic fever. Microbes are present in persons suffering from cholera, typhus, whooping-cough, measles, hydrophobia, etc., but as to their history and connection with disease we have yet much to learn. It is fortunate, indeed, that they do not all attack us.

In surgical cases, again, the danger of compound fractures and mortification of wounds has been found to be mainly due to the presence of microscopic organisms; and Lister, by his antiseptic treatment which destroys these

germs or prevents their access, has greatly diminished the danger of operations, and the sufferings of recovery.

SIZE OF ANIMALS

In the size of animals we find every gradation from these atoms which even in the most powerful microscopes appear as mere points, up to the gigantic reptiles of past ages and the Whales of our present ocean. The horned Ray or Skate is 25 feet in length, by 30 in width. The Cuttle-fishes of our seas, though so hideous as to resemble a bad dream, are too small to be formidable; but off the Newfoundland coast is a species with arms sometimes 30 feet long, so as to be 60 feet from tip to tip. The body, however, is small in proportion. The Giraffe attains a height of over 20 feet; the Elephant, though not so tall, is more bulky; the Crocodile reaches a length of over 20 feet, the Python of 60 feet, the extinct Titanosaurus of the American Jurassic beds, the largest land animal yet known to us, 100 feet in length and 30 in height; the

Whalebone Whale over 70 feet, Sibbald's Whale is said to have reached 80-90, which is perhaps the limit. Captain Scoresby indeed mentions a Rorqual no less than 120 feet in length, but this is probably too great an estimate.

COMPLEXITY OF ANIMAL STRUCTURE

The complexity of animal structure is even more marvellous than their mere magnitude. A Caterpillar contains more than 2000 muscles. In our own body are some 2,000,000 perspiration glands, communicating with the surface by ducts having a total length of some 10 miles; while that of the arteries, veins, and capillaries must be very great; the blood contains millions of millions of corpuscles, each no doubt a complex structure in itself; the rods in the retina, which are supposed to be the ultimate recipient of light, are estimated at 30,000,000; and Meinert has calculated that the gray matter of the brain is built up of at least 600,000,000 cells. No

« PreviousContinue »