Page images
PDF
EPUB

powers, differentials, &c., might be made available in the solution of differential equations, and of equations in finite differences.

This idea, however, probably from some degree of doubt as to the legitimacy of the methods which it suggested, had not been fully or clearly developed: it seems to have been chiefly employed as affording a convenient way of expressing solutions already obtained by more familiar considerations.

To this branch of the subject Mr. Gregory directed his attention, and from the general views of the laws of combination of symbols already noticed, deduced in a regular and systematic form, methods of solution of a large and important class of differential equations (linear equations with constant coefficients, whether ordinary or partial) of systems of such equations existing simultaneously, of the corresponding classes of equations in finite and mixed differences; and lastly, of many functional equations. The steady and unwavering apprehension of the fundamental principle which pervades all these applications of it, gives them a value quite independent of that which arises from the facility of the methods of solution which they suggest.

The investigations of which I have endeavoured to illustrate the character and tendency, appeared from time to time in the Cambridge Mathematical Journal.

In this periodical publication Mr. Gregory

took much interest. He had been active in establishing it, and continued to be its editor, except for a short interval, from the time of its first appearance in the autumn of 1837, until a few months before his death. For this occupation he was for many reasons well qualified; his acquaintance with mathematical literature was very extensive, while his interest in all subjects connected with it was not only very strong, but also singularly free from the least tinge of jealous or personal feeling. That which another had done or was about to do, seemed to give him as much pleasure as if he himself had been the author of it, and this even when it related to some subject which his own researches might seem to have appropriated.

This trait, as the recollections of those who knew him best will bear me witness, was intimately connected with his whole character, which was in truth an illustration of the remark of a French writer, that to be free from envy is the surest indication of a fine nature.

To the Cambridge Mathematical Journal, Mr. Gregory contributed many papers beside those which relate to the researches already noticed. In some of these he developed certain particular applications of the principles he had laid down in an Essay on the Foundations of Algebra, presented to the Royal Society of Edinburgh in 1838, and printed in the fourteenth volume of their Transactions. I may particularly mention

a paper on the curious question of the logarithms of negative quantities, a question which, it is well known, has often been discussed among mathematicians, and which even now does not appear to be entirely settled.

In 1840, Mr. Gregory was elected Fellow of Trinity College; in the following year he became Master of Arts, and was appointed to the office of moderator, that is, of principal mathematical examiner. His discharge of the duties of this office (which is looked upon as one of the most honourable of those which are accessible to the younger members of the University) was distinguished by great good sense and discretion.

[ocr errors]

In the close of the year 1841, Mr. Gregory produced his "Collection of Examples of the Processes of the Differential and Integral Calculus ;' a work which required, and which manifests much research, and an extensive acquaintance with mathematical writings. He had at first only wished to superintend the publication of a second edition of the work with a similar title, which appeared more than twenty-five years since, and of which Messrs. Herschel, Peacock, and Babbage were the authors. Difficulties, however, arose, which prevented the fulfilment of this wish, and it is not perhaps to be regretted that Mr. Gregory was thus led to undertake a more original design. It is well known that the earlier work exercised a great and beneficial influence on the studies of the University, nor was it in any way unworthy

of the reputation of its authors. The original matter contributed by Sir John Herschel is especially valuable. Nevertheless, the progress which mathematical science has since made, rendered it desirable that another work of the same kind should be produced, in which the more recent improvements of the calculus might be embodied.

Since the beginning of the century, the general aspect of mathematics has greatly changed. A different class of problems from that which chiefly engaged the attention of the great writers of the last age has arisen, and the new requirements of natural philosophy have greatly influenced the progress of pure analysis. The mathematical theories of heat, light, electricity, and magnetism, may be fairly regarded as the achievement of the last fifty years. And in this class of researches an idea is prominent, which comparatively occurs but seldom in purely dynamical enquiries. This is the idea of discontinuity. Thus, for instance, in the theory of heat, the conditions relating to the surface of the body whose variations of temperature we are considering, form an essential and peculiar element of the problem; their peculiarity arises from the discontinuity of the transition from the temperature of the body to that of the space in which it is placed. Similarly, in the undulatory theory of light, there is much difficulty in determining the conditions which belong to the bounding surfaces of any portion

of ether; and although this difficulty has, in the ordinary applications of the theory, been avoided by the introduction of proximate principles, it cannot be said to have been got rid of.

The power, therefore, of symbolizing discontinuity, if such an expression may be permitted, is essential to the progress of the more recent applications of mathematics to natural philosophy, and it is well known that this power is intimately connected with the theory of definite integrals. Hence the principal importance of this theory, which was altogether passed over in the earlier collection of examples.

Mr. Gregory devoted to it a chapter of his work, and noticed particularly some of the more remarkable applications of definite integrals to the expression of the solutions of partial differential equations. It is not improbable that in another edition he would have developed this subject at somewhat greater length. He had long been an admirer of Fourier's great work on heat, to which this part of mathematics owes so much; and once, while turning over its pages, remarked to the writer,-"All these things seem to me to be a kind of mathematical paradise."

In 1841, the mathematical Professorship at Toronto was offered to Mr. Gregory: this, however, circumstances induced him to decline. Some years previously he had been a candidate for the Mathematical Chair at Edinburgh.

His year of office as moderator ended in

« PreviousContinue »