An Introduction to Celestial Mechanics

Front Cover
Cambridge University Press, Jun 28, 2012 - Science - 266 pages
This accessible text on classical celestial mechanics, the principles governing the motions of bodies in the Solar System, provides a clear and concise treatment of virtually all of the major features of solar system dynamics. Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon and Sun, the Roche radius, the stability of Lagrange points in the three-body problem and lunar motion. More than 100 exercises allow students to gauge their understanding and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.
 

Contents

Orbits in central force fields
63
Rotating reference frames
74
Lagrangian mechanics
97
Rigid body rotation
105
Free precession of the Earth
114
1
147
63
158
Secularperturbationtheory
172
10
197
39
203
Appendix A Useful mathematics
217
Appendix B Derivation of Lagrange planetary equations
234
Expansion of orbital evolution equations
247
Bibliography
259
Copyright

Other editions - View all

Common terms and phrases

About the author (2012)

Richard Fitzpatrick is Professor of Physics at the University of Texas, Austin, where he has been a faculty member since 1994. He earned his Master's degree in Physics at the University of Cambridge and his DPhil in Astronomy at the University of Sussex. He is a longstanding Fellow of the Royal Astronomical Society and author of Maxwell's Equations and the Principles of Electromagnetism (2008).

Bibliographic information