Front cover image for Conceptual foundations of quantum field theory

Conceptual foundations of quantum field theory

Quantum field theory is a powerful language for the description of the laws and principles that govern the behaviour of the subatomic entities. This book contains up-to-date, in-depth analyses, by a group of eminent physicists and philosophers of science, of our present understanding of its conceptual foundations and their possible revisions.
Print Book, English, 2004
1st paperback ed View all formats and editions
Cambridge University Press, New York, 2004
xix, 399 p. : il. ; 26 cm.
9780521602723, 0521602726
1025983022
Introduction: Conceptual issues in quantum field theory; Part I. Philosophers' Interests in Quantum Field Theory: 1. Why are we philosophers interested in quantum field theory; 2. Quantum field theory and the philosopher; Part II. Three Approaches to the Foundations of Quantum Field Theory: 3. The usefulness of a general theory of quantized fields; 4. Effective field theory in condensed matter physics; 5. The triumph and limitations of quantum field theory; 6. Comments; Discussions; Part III. Does Quantum Field Theory Need a Foundation: 7. Does quantum field theory need a foundation?; Part IV. Mathematics, Statistical Mechanics and Quantum Field Theory: 8. Renormalization group theory: its basis and formulation in statistical physics; 9. Where does quantum field theory fit into the big picture?; 10. The unreasonable effectiveness of quantum field theory; 11. Comment: the quantum field theory of physics and of mathematics; Part V. Quantum Field Theory and Spacetime: Introduction; 12. Quantum field theory and spacetime: formalism and reality; 13. Quantum field theory of geometry; 14. 'Localization' in quantum field theory: how much of QFT is compatible with what we know about spacetime; 15. Comments; VI. 16. What is quantum field theory and what did we think it was?; 17. Comments; Discussions; Part VII.Renormalization Group: 18. What is fundamental physics? A renormalization group perspective; 19. Renormalization group: an interesting yet puzzling idea; Part VIII. Non-Abelian Gauge Theory: 20. Gauge fields, gravity and Bohm's theory; 21. Is the Aharonov-Bohm effect local?; Discussions; Part IX. The Ontology of Particles or Fields: 22. The ineliminable classical face of quantum field theory; 23. The logic of quanta; 24. Do Feynman diagrams endorse a particle ontology?; 25. On the ontology of QFT; Part X. Panel Discussion.
Índice